Security Vulnerabilities
- CVEs Published In July 2022
The Motorola ACE1000 RTU through 2022-05-02 uses ECB encryption unsafely. It can communicate with an XRT LAN-to-radio gateway by means of an embedded client. Credentials for accessing this gateway are stored after being encrypted with the Tiny Encryption Algorithm (TEA) in ECB mode using a hardcoded key. Similarly, the ACE1000 RTU can route MDLC traffic over Extended Command and Management Protocol (XCMP) and Network Layer (XNL) networks via the MDLC driver. Authentication to the XNL port is protected by TEA in ECB mode using a hardcoded key.
The Motorola MOSCAD and ACE line of RTUs through 2022-05-02 omit an authentication requirement. They feature IP Gateway modules which allow for interfacing between Motorola Data Link Communication (MDLC) networks (potentially over a variety of serial, RF and/or Ethernet links) and TCP/IP networks. Communication with RTUs behind the gateway is done by means of the proprietary IPGW protocol (5001/TCP). This protocol does not have any authentication features, allowing any attacker capable of communicating with the port in question to invoke (a subset of) desired functionality.
HashiCorp Vault Enterprise 1.7.0 through 1.9.7, 1.10.4, and 1.11.0 clusters using Integrated Storage expose an unauthenticated API endpoint that could be abused to override the voter status of a node within a Vault HA cluster, introducing potential for future data loss or catastrophic failure. Fixed in Vault Enterprise 1.9.8, 1.10.5, and 1.11.1.
The QQ application 8.7.1 for Android and iOS does not enforce the permission requirements (e.g., android.permission.ACCESS_FINE_LOCATION) for determining the device's physical location. An attacker can use qq.createMapContext to create a MapContext object, use MapContext.moveToLocation to move the center of the map to the device's location, and use MapContext.getCenterLocation to get the latitude and longitude of the current map center.
Emerson OpenBSI through 2022-04-29 uses weak cryptography. It is an engineering environment for the ControlWave and Bristol Babcock line of RTUs. DES with hardcoded cryptographic keys is used for protection of certain system credentials, engineering files, and sensitive utilities.
The Emerson DeltaV Distributed Control System (DCS) controllers and IO cards through 2022-04-29 misuse passwords. FTP has hardcoded credentials (but may often be disabled in production). This affects S-series, P-series, and CIOC/EIOC nodes. NOTE: this is different from CVE-2014-2350.
The Emerson DeltaV Distributed Control System (DCS) controllers and IO cards through 2022-04-29 misuse passwords. TELNET on port 18550 provides access to a root shell via hardcoded credentials. This affects S-series, P-series, and CIOC/EIOC nodes. NOTE: this is different from CVE-2014-2350.
The Emerson DeltaV Distributed Control System (DCS) controllers and IO cards through 2022-04-29 misuse passwords. WIOC SSH provides access to a shell as root, DeltaV, or backup via hardcoded credentials. NOTE: this is different from CVE-2014-2350.
The Emerson DeltaV Distributed Control System (DCS) controllers and IO cards through 2022-04-29 misuse passwords. Access to privileged operations on the maintenance port TELNET interface (23/TCP) on M-series and SIS (CSLS/LSNB/LSNG) nodes is controlled by means of utility passwords. These passwords are generated using a deterministic, insecure algorithm using a single seed value composed of a day/hour/minute timestamp with less than 16 bits of entropy. The seed value is fed through a lookup table and a series of permutation operations resulting in three different four-character passwords corresponding to different privilege levels. An attacker can easily reconstruct these passwords and thus gain access to privileged maintenance operations. NOTE: this is different from CVE-2014-2350.
The Motorola MDLC protocol through 2022-05-02 mishandles message integrity. It supports three security modes: Plain, Legacy Encryption, and New Encryption. In Legacy Encryption mode, traffic is encrypted via the Tiny Encryption Algorithm (TEA) block-cipher in ECB mode. This mode of operation does not offer message integrity and offers reduced confidentiality above the block level, as demonstrated by an ECB Penguin attack against any block ciphers.