Security Vulnerabilities
- CVEs Published In July 2024
In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Add outer runtime_pm protection to xe_live_ktest@xe_dma_buf
Any kunit doing any memory access should get their own runtime_pm
outer references since they don't use the standard driver API
entries. In special this dma_buf from the same driver.
Found by pre-merge CI on adding WARN calls for unprotected
inner callers:
<6> [318.639739] # xe_dma_buf_kunit: running xe_test_dmabuf_import_same_driver
<4> [318.639957] ------------[ cut here ]------------
<4> [318.639967] xe 0000:4d:00.0: Missing outer runtime PM protection
<4> [318.640049] WARNING: CPU: 117 PID: 3832 at drivers/gpu/drm/xe/xe_pm.c:533 xe_pm_runtime_get_noresume+0x48/0x60 [xe]
In the Linux kernel, the following vulnerability has been resolved:
crypto: hisilicon/debugfs - Fix debugfs uninit process issue
During the zip probe process, the debugfs failure does not stop
the probe. When debugfs initialization fails, jumping to the
error branch will also release regs, in addition to its own
rollback operation.
As a result, it may be released repeatedly during the regs
uninit process. Therefore, the null check needs to be added to
the regs uninit process.
In the Linux kernel, the following vulnerability has been resolved:
bnx2x: Fix multiple UBSAN array-index-out-of-bounds
Fix UBSAN warnings that occur when using a system with 32 physical
cpu cores or more, or when the user defines a number of Ethernet
queues greater than or equal to FP_SB_MAX_E1x using the num_queues
module parameter.
Currently there is a read/write out of bounds that occurs on the array
"struct stats_query_entry query" present inside the "bnx2x_fw_stats_req"
struct in "drivers/net/ethernet/broadcom/bnx2x/bnx2x.h".
Looking at the definition of the "struct stats_query_entry query" array:
struct stats_query_entry query[FP_SB_MAX_E1x+
BNX2X_FIRST_QUEUE_QUERY_IDX];
FP_SB_MAX_E1x is defined as the maximum number of fast path interrupts and
has a value of 16, while BNX2X_FIRST_QUEUE_QUERY_IDX has a value of 3
meaning the array has a total size of 19.
Since accesses to "struct stats_query_entry query" are offset-ted by
BNX2X_FIRST_QUEUE_QUERY_IDX, that means that the total number of Ethernet
queues should not exceed FP_SB_MAX_E1x (16). However one of these queues
is reserved for FCOE and thus the number of Ethernet queues should be set
to [FP_SB_MAX_E1x -1] (15) if FCOE is enabled or [FP_SB_MAX_E1x] (16) if
it is not.
This is also described in a comment in the source code in
drivers/net/ethernet/broadcom/bnx2x/bnx2x.h just above the Macro definition
of FP_SB_MAX_E1x. Below is the part of this explanation that it important
for this patch
/*
* The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is
* control by the number of fast-path status blocks supported by the
* device (HW/FW). Each fast-path status block (FP-SB) aka non-default
* status block represents an independent interrupts context that can
* serve a regular L2 networking queue. However special L2 queues such
* as the FCoE queue do not require a FP-SB and other components like
* the CNIC may consume FP-SB reducing the number of possible L2 queues
*
* If the maximum number of FP-SB available is X then:
* a. If CNIC is supported it consumes 1 FP-SB thus the max number of
* regular L2 queues is Y=X-1
* b. In MF mode the actual number of L2 queues is Y= (X-1/MF_factor)
* c. If the FCoE L2 queue is supported the actual number of L2 queues
* is Y+1
* d. The number of irqs (MSIX vectors) is either Y+1 (one extra for
* slow-path interrupts) or Y+2 if CNIC is supported (one additional
* FP interrupt context for the CNIC).
* e. The number of HW context (CID count) is always X or X+1 if FCoE
* L2 queue is supported. The cid for the FCoE L2 queue is always X.
*/
However this driver also supports NICs that use the E2 controller which can
handle more queues due to having more FP-SB represented by FP_SB_MAX_E2.
Looking at the commits when the E2 support was added, it was originally
using the E1x parameters: commit f2e0899f0f27 ("bnx2x: Add 57712 support").
Back then FP_SB_MAX_E2 was set to 16 the same as E1x. However the driver
was later updated to take full advantage of the E2 instead of having it be
limited to the capabilities of the E1x. But as far as we can tell, the
array "stats_query_entry query" was still limited to using the FP-SB
available to the E1x cards as part of an oversignt when the driver was
updated to take full advantage of the E2, and now with the driver being
aware of the greater queue size supported by E2 NICs, it causes the UBSAN
warnings seen in the stack traces below.
This patch increases the size of the "stats_query_entry query" array by
replacing FP_SB_MAX_E1x with FP_SB_MAX_E2 to be large enough to handle
both types of NICs.
Stack traces:
UBSAN: array-index-out-of-bounds in
drivers/net/ethernet/broadcom/bnx2x/bnx2x_stats.c:1529:11
index 20 is out of range for type 'stats_query_entry [19]'
CPU: 12 PID: 858 Comm: systemd-network Not tainted 6.9.0-060900rc7-generic
#202405052133
Hardware name: HP ProLiant DL360 Gen9/ProLiant DL360
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
fs: don't misleadingly warn during thaw operations
The block device may have been frozen before it was claimed by a
filesystem. Concurrently another process might try to mount that
frozen block device and has temporarily claimed the block device for
that purpose causing a concurrent fs_bdev_thaw() to end up here. The
mounter is already about to abort mounting because they still saw an
elevanted bdev->bd_fsfreeze_count so get_bdev_super() will return
NULL in that case.
For example, P1 calls dm_suspend() which calls into bdev_freeze() before
the block device has been claimed by the filesystem. This brings
bdev->bd_fsfreeze_count to 1 and no call into fs_bdev_freeze() is
required.
Now P2 tries to mount that frozen block device. It claims it and checks
bdev->bd_fsfreeze_count. As it's elevated it aborts mounting.
In the meantime P3 called dm_resume(). P3 sees that the block device is
already claimed by a filesystem and calls into fs_bdev_thaw().
P3 takes a passive reference and realizes that the filesystem isn't
ready yet. P3 puts itself to sleep to wait for the filesystem to become
ready.
P2 now puts the last active reference to the filesystem and marks it as
dying. P3 gets woken, sees that the filesystem is dying and
get_bdev_super() fails.
In the Linux kernel, the following vulnerability has been resolved:
net: txgbe: remove separate irq request for MSI and INTx
When using MSI or INTx interrupts, request_irq() for pdev->irq will
conflict with request_threaded_irq() for txgbe->misc.irq, to cause
system crash. So remove txgbe_request_irq() for MSI/INTx case, and
rename txgbe_request_msix_irqs() since it only request for queue irqs.
Add wx->misc_irq_domain to determine whether the driver creates an IRQ
domain and threaded request the IRQs.
In the Linux kernel, the following vulnerability has been resolved:
bpf: mark bpf_dummy_struct_ops.test_1 parameter as nullable
Test case dummy_st_ops/dummy_init_ret_value passes NULL as the first
parameter of the test_1() function. Mark this parameter as nullable to
make verifier aware of such possibility.
Otherwise, NULL check in the test_1() code:
SEC("struct_ops/test_1")
int BPF_PROG(test_1, struct bpf_dummy_ops_state *state)
{
if (!state)
return ...;
... access state ...
}
Might be removed by verifier, thus triggering NULL pointer dereference
under certain conditions.
In the Linux kernel, the following vulnerability has been resolved:
nvmet: fix a possible leak when destroy a ctrl during qp establishment
In nvmet_sq_destroy we capture sq->ctrl early and if it is non-NULL we
know that a ctrl was allocated (in the admin connect request handler)
and we need to release pending AERs, clear ctrl->sqs and sq->ctrl
(for nvme-loop primarily), and drop the final reference on the ctrl.
However, a small window is possible where nvmet_sq_destroy starts (as
a result of the client giving up and disconnecting) concurrently with
the nvme admin connect cmd (which may be in an early stage). But *before*
kill_and_confirm of sq->ref (i.e. the admin connect managed to get an sq
live reference). In this case, sq->ctrl was allocated however after it was
captured in a local variable in nvmet_sq_destroy.
This prevented the final reference drop on the ctrl.
Solve this by re-capturing the sq->ctrl after all inflight request has
completed, where for sure sq->ctrl reference is final, and move forward
based on that.
This issue was observed in an environment with many hosts connecting
multiple ctrls simoutanuosly, creating a delay in allocating a ctrl
leading up to this race window.
In the Linux kernel, the following vulnerability has been resolved:
i2c: pnx: Fix potential deadlock warning from del_timer_sync() call in isr
When del_timer_sync() is called in an interrupt context it throws a warning
because of potential deadlock. The timer is used only to exit from
wait_for_completion() after a timeout so replacing the call with
wait_for_completion_timeout() allows to remove the problematic timer and
its related functions altogether.
In the Linux kernel, the following vulnerability has been resolved:
tcp_metrics: validate source addr length
I don't see anything checking that TCP_METRICS_ATTR_SADDR_IPV4
is at least 4 bytes long, and the policy doesn't have an entry
for this attribute at all (neither does it for IPv6 but v6 is
manually validated).
In the Linux kernel, the following vulnerability has been resolved:
mm: avoid overflows in dirty throttling logic
The dirty throttling logic is interspersed with assumptions that dirty
limits in PAGE_SIZE units fit into 32-bit (so that various multiplications
fit into 64-bits). If limits end up being larger, we will hit overflows,
possible divisions by 0 etc. Fix these problems by never allowing so
large dirty limits as they have dubious practical value anyway. For
dirty_bytes / dirty_background_bytes interfaces we can just refuse to set
so large limits. For dirty_ratio / dirty_background_ratio it isn't so
simple as the dirty limit is computed from the amount of available memory
which can change due to memory hotplug etc. So when converting dirty
limits from ratios to numbers of pages, we just don't allow the result to
exceed UINT_MAX.
This is root-only triggerable problem which occurs when the operator
sets dirty limits to >16 TB.