Security Vulnerabilities
- CVEs Published In June 2025
In the Linux kernel, the following vulnerability has been resolved:
RDMA/siw: Fix duplicated reported IW_CM_EVENT_CONNECT_REPLY event
If siw_recv_mpa_rr returns -EAGAIN, it means that the MPA reply hasn't
been received completely, and should not report IW_CM_EVENT_CONNECT_REPLY
in this case. This may trigger a call trace in iw_cm. A simple way to
trigger this:
server: ib_send_lat
client: ib_send_lat -R <server_ip>
The call trace looks like this:
kernel BUG at drivers/infiniband/core/iwcm.c:894!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
<...>
Workqueue: iw_cm_wq cm_work_handler [iw_cm]
Call Trace:
<TASK>
cm_work_handler+0x1dd/0x370 [iw_cm]
process_one_work+0x1e2/0x3b0
worker_thread+0x49/0x2e0
? rescuer_thread+0x370/0x370
kthread+0xe5/0x110
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x1f/0x30
</TASK>
In the Linux kernel, the following vulnerability has been resolved:
RDMA/irdma: Fix a window for use-after-free
During a destroy CQ an interrupt may cause processing of a CQE after CQ
resources are freed by irdma_cq_free_rsrc(). Fix this by moving the call
to irdma_cq_free_rsrc() after the irdma_sc_cleanup_ceqes(), which is
called under the cq_lock.
In the Linux kernel, the following vulnerability has been resolved:
RDMA/qedr: Fix potential memory leak in __qedr_alloc_mr()
__qedr_alloc_mr() allocates a memory chunk for "mr->info.pbl_table" with
init_mr_info(). When rdma_alloc_tid() and rdma_register_tid() fail, "mr"
is released while "mr->info.pbl_table" is not released, which will lead
to a memory leak.
We should release the "mr->info.pbl_table" with qedr_free_pbl() when error
occurs to fix the memory leak.
In the Linux kernel, the following vulnerability has been resolved:
usb: aspeed-vhub: Fix refcount leak bug in ast_vhub_init_desc()
We should call of_node_put() for the reference returned by
of_get_child_by_name() which has increased the refcount.
In the Linux kernel, the following vulnerability has been resolved:
memstick/ms_block: Fix a memory leak
'erased_blocks_bitmap' is never freed. As it is allocated at the same time
as 'used_blocks_bitmap', it is likely that it should be freed also at the
same time.
Add the corresponding bitmap_free() in msb_data_clear().
In the Linux kernel, the following vulnerability has been resolved:
ASoC: mediatek: mt8173: Fix refcount leak in mt8173_rt5650_rt5676_dev_probe
of_parse_phandle() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not need anymore.
Fix missing of_node_put() in error paths.
In the Linux kernel, the following vulnerability has been resolved:
ASoC: mt6797-mt6351: Fix refcount leak in mt6797_mt6351_dev_probe
of_parse_phandle() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not need anymore.
Add missing of_node_put() to avoid refcount leak.
In the Linux kernel, the following vulnerability has been resolved:
ASoC: cros_ec_codec: Fix refcount leak in cros_ec_codec_platform_probe
of_parse_phandle() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not need anymore.
Add missing of_node_put() to avoid refcount leak.
In the Linux kernel, the following vulnerability has been resolved:
jbd2: fix assertion 'jh->b_frozen_data == NULL' failure when journal aborted
Following process will fail assertion 'jh->b_frozen_data == NULL' in
jbd2_journal_dirty_metadata():
jbd2_journal_commit_transaction
unlink(dir/a)
jh->b_transaction = trans1
jh->b_jlist = BJ_Metadata
journal->j_running_transaction = NULL
trans1->t_state = T_COMMIT
unlink(dir/b)
handle->h_trans = trans2
do_get_write_access
jh->b_modified = 0
jh->b_frozen_data = frozen_buffer
jh->b_next_transaction = trans2
jbd2_journal_dirty_metadata
is_handle_aborted
is_journal_aborted // return false
--> jbd2 abort <--
while (commit_transaction->t_buffers)
if (is_journal_aborted)
jbd2_journal_refile_buffer
__jbd2_journal_refile_buffer
WRITE_ONCE(jh->b_transaction,
jh->b_next_transaction)
WRITE_ONCE(jh->b_next_transaction, NULL)
__jbd2_journal_file_buffer(jh, BJ_Reserved)
J_ASSERT_JH(jh, jh->b_frozen_data == NULL) // assertion failure !
The reproducer (See detail in [Link]) reports:
------------[ cut here ]------------
kernel BUG at fs/jbd2/transaction.c:1629!
invalid opcode: 0000 [#1] PREEMPT SMP
CPU: 2 PID: 584 Comm: unlink Tainted: G W
5.19.0-rc6-00115-g4a57a8400075-dirty #697
RIP: 0010:jbd2_journal_dirty_metadata+0x3c5/0x470
RSP: 0018:ffffc90000be7ce0 EFLAGS: 00010202
Call Trace:
<TASK>
__ext4_handle_dirty_metadata+0xa0/0x290
ext4_handle_dirty_dirblock+0x10c/0x1d0
ext4_delete_entry+0x104/0x200
__ext4_unlink+0x22b/0x360
ext4_unlink+0x275/0x390
vfs_unlink+0x20b/0x4c0
do_unlinkat+0x42f/0x4c0
__x64_sys_unlink+0x37/0x50
do_syscall_64+0x35/0x80
After journal aborting, __jbd2_journal_refile_buffer() is executed with
holding @jh->b_state_lock, we can fix it by moving 'is_handle_aborted()'
into the area protected by @jh->b_state_lock.
In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Fix error unwind in rxe_create_qp()
In the function rxe_create_qp(), rxe_qp_from_init() is called to
initialize qp, internally things like the spin locks are not setup until
rxe_qp_init_req().
If an error occures before this point then the unwind will call
rxe_cleanup() and eventually to rxe_qp_do_cleanup()/rxe_cleanup_task()
which will oops when trying to access the uninitialized spinlock.
Move the spinlock initializations earlier before any failures.