Security Vulnerabilities
- CVEs Published In June 2024
In the Linux kernel, the following vulnerability has been resolved:
KVM: x86: Free kvm_cpuid_entry2 array on post-KVM_RUN KVM_SET_CPUID{,2}
Free the "struct kvm_cpuid_entry2" array on successful post-KVM_RUN
KVM_SET_CPUID{,2} to fix a memory leak, the callers of kvm_set_cpuid()
free the array only on failure.
BUG: memory leak
unreferenced object 0xffff88810963a800 (size 2048):
comm "syz-executor025", pid 3610, jiffies 4294944928 (age 8.080s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 0d 00 00 00 ................
47 65 6e 75 6e 74 65 6c 69 6e 65 49 00 00 00 00 GenuntelineI....
backtrace:
[<ffffffff814948ee>] kmalloc_node include/linux/slab.h:604 [inline]
[<ffffffff814948ee>] kvmalloc_node+0x3e/0x100 mm/util.c:580
[<ffffffff814950f2>] kvmalloc include/linux/slab.h:732 [inline]
[<ffffffff814950f2>] vmemdup_user+0x22/0x100 mm/util.c:199
[<ffffffff8109f5ff>] kvm_vcpu_ioctl_set_cpuid2+0x8f/0xf0 arch/x86/kvm/cpuid.c:423
[<ffffffff810711b9>] kvm_arch_vcpu_ioctl+0xb99/0x1e60 arch/x86/kvm/x86.c:5251
[<ffffffff8103e92d>] kvm_vcpu_ioctl+0x4ad/0x950 arch/x86/kvm/../../../virt/kvm/kvm_main.c:4066
[<ffffffff815afacc>] vfs_ioctl fs/ioctl.c:51 [inline]
[<ffffffff815afacc>] __do_sys_ioctl fs/ioctl.c:874 [inline]
[<ffffffff815afacc>] __se_sys_ioctl fs/ioctl.c:860 [inline]
[<ffffffff815afacc>] __x64_sys_ioctl+0xfc/0x140 fs/ioctl.c:860
[<ffffffff844a3335>] do_syscall_x64 arch/x86/entry/common.c:50 [inline]
[<ffffffff844a3335>] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
[<ffffffff84600068>] entry_SYSCALL_64_after_hwframe+0x44/0xae
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Wrap dcn301_calculate_wm_and_dlg for FPU.
Mirrors the logic for dcn30. Cue lots of WARNs and some
kernel panics without this fix.
In the Linux kernel, the following vulnerability has been resolved:
tracing/histogram: Fix a potential memory leak for kstrdup()
kfree() is missing on an error path to free the memory allocated by
kstrdup():
p = param = kstrdup(data->params[i], GFP_KERNEL);
So it is better to free it via kfree(p).
In the Linux kernel, the following vulnerability has been resolved:
bpf: Guard against accessing NULL pt_regs in bpf_get_task_stack()
task_pt_regs() can return NULL on powerpc for kernel threads. This is
then used in __bpf_get_stack() to check for user mode, resulting in a
kernel oops. Guard against this by checking return value of
task_pt_regs() before trying to obtain the call chain.
In the Linux kernel, the following vulnerability has been resolved:
net: bridge: vlan: fix memory leak in __allowed_ingress
When using per-vlan state, if vlan snooping and stats are disabled,
untagged or priority-tagged ingress frame will go to check pvid state.
If the port state is forwarding and the pvid state is not
learning/forwarding, untagged or priority-tagged frame will be dropped
but skb memory is not freed.
Should free skb when __allowed_ingress returns false.
In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dpu: invalid parameter check in dpu_setup_dspp_pcc
The function performs a check on the "ctx" input parameter, however, it
is used before the check.
Initialize the "base" variable after the sanity check to avoid a
possible NULL pointer dereference.
Addresses-Coverity-ID: 1493866 ("Null pointer dereference")
In the Linux kernel, the following vulnerability has been resolved:
hwmon: (nct6775) Fix crash in clear_caseopen
Paweł Marciniak reports the following crash, observed when clearing
the chassis intrusion alarm.
BUG: kernel NULL pointer dereference, address: 0000000000000028
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 3 PID: 4815 Comm: bash Tainted: G S 5.16.2-200.fc35.x86_64 #1
Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./Z97 Extreme4, BIOS P2.60A 05/03/2018
RIP: 0010:clear_caseopen+0x5a/0x120 [nct6775]
Code: 68 70 e8 e9 32 b1 e3 85 c0 0f 85 d2 00 00 00 48 83 7c 24 ...
RSP: 0018:ffffabcb02803dd8 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000002 RCX: 0000000000000000
RDX: ffff8e8808192880 RSI: 0000000000000000 RDI: ffff8e87c7509a68
RBP: 0000000000000000 R08: 0000000000000001 R09: 000000000000000a
R10: 000000000000000a R11: f000000000000000 R12: 000000000000001f
R13: ffff8e87c7509828 R14: ffff8e87c7509a68 R15: ffff8e88494527a0
FS: 00007f4db9151740(0000) GS:ffff8e8ebfec0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000028 CR3: 0000000166b66001 CR4: 00000000001706e0
Call Trace:
<TASK>
kernfs_fop_write_iter+0x11c/0x1b0
new_sync_write+0x10b/0x180
vfs_write+0x209/0x2a0
ksys_write+0x4f/0xc0
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
The problem is that the device passed to clear_caseopen() is the hwmon
device, not the platform device, and the platform data is not set in the
hwmon device. Store the pointer to sio_data in struct nct6775_data and
get if from there if needed.
In the Linux kernel, the following vulnerability has been resolved:
net/smc: Transitional solution for clcsock race issue
We encountered a crash in smc_setsockopt() and it is caused by
accessing smc->clcsock after clcsock was released.
BUG: kernel NULL pointer dereference, address: 0000000000000020
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 1 PID: 50309 Comm: nginx Kdump: loaded Tainted: G E 5.16.0-rc4+ #53
RIP: 0010:smc_setsockopt+0x59/0x280 [smc]
Call Trace:
<TASK>
__sys_setsockopt+0xfc/0x190
__x64_sys_setsockopt+0x20/0x30
do_syscall_64+0x34/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f16ba83918e
</TASK>
This patch tries to fix it by holding clcsock_release_lock and
checking whether clcsock has already been released before access.
In case that a crash of the same reason happens in smc_getsockopt()
or smc_switch_to_fallback(), this patch also checkes smc->clcsock
in them too. And the caller of smc_switch_to_fallback() will identify
whether fallback succeeds according to the return value.
In the Linux kernel, the following vulnerability has been resolved:
block: fix memory leak in disk_register_independent_access_ranges
kobject_init_and_add() takes reference even when it fails.
According to the doc of kobject_init_and_add()
If this function returns an error, kobject_put() must be called to
properly clean up the memory associated with the object.
Fix this issue by adding kobject_put().
Callback function blk_ia_ranges_sysfs_release() in kobject_put()
can handle the pointer "iars" properly.
In the Linux kernel, the following vulnerability has been resolved:
phylib: fix potential use-after-free
Commit bafbdd527d56 ("phylib: Add device reset GPIO support") added call
to phy_device_reset(phydev) after the put_device() call in phy_detach().
The comment before the put_device() call says that the phydev might go
away with put_device().
Fix potential use-after-free by calling phy_device_reset() before
put_device().