Security Vulnerabilities
- CVEs Published In June 2025
In the Linux kernel, the following vulnerability has been resolved:
firmware_loader: Fix memory leak in firmware upload
In the case of firmware-upload, an instance of struct fw_upload is
allocated in firmware_upload_register(). This data needs to be freed
in fw_dev_release(). Create a new fw_upload_free() function in
sysfs_upload.c to handle the firmware-upload specific memory frees
and incorporate the missing kfree call for the fw_upload structure.
In the Linux kernel, the following vulnerability has been resolved:
dma-buf/dma-resv: check if the new fence is really later
Previously when we added a fence to a dma_resv object we always
assumed the the newer than all the existing fences.
With Jason's work to add an UAPI to explicit export/import that's not
necessary the case any more. So without this check we would allow
userspace to force the kernel into an use after free error.
Since the change is very small and defensive it's probably a good
idea to backport this to stable kernels as well just in case others
are using the dma_resv object in the same way.
In the Linux kernel, the following vulnerability has been resolved:
USB: core: Prevent nested device-reset calls
Automatic kernel fuzzing revealed a recursive locking violation in
usb-storage:
============================================
WARNING: possible recursive locking detected
5.18.0 #3 Not tainted
--------------------------------------------
kworker/1:3/1205 is trying to acquire lock:
ffff888018638db8 (&us_interface_key[i]){+.+.}-{3:3}, at:
usb_stor_pre_reset+0x35/0x40 drivers/usb/storage/usb.c:230
but task is already holding lock:
ffff888018638db8 (&us_interface_key[i]){+.+.}-{3:3}, at:
usb_stor_pre_reset+0x35/0x40 drivers/usb/storage/usb.c:230
...
stack backtrace:
CPU: 1 PID: 1205 Comm: kworker/1:3 Not tainted 5.18.0 #3
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.13.0-1ubuntu1.1 04/01/2014
Workqueue: usb_hub_wq hub_event
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
print_deadlock_bug kernel/locking/lockdep.c:2988 [inline]
check_deadlock kernel/locking/lockdep.c:3031 [inline]
validate_chain kernel/locking/lockdep.c:3816 [inline]
__lock_acquire.cold+0x152/0x3ca kernel/locking/lockdep.c:5053
lock_acquire kernel/locking/lockdep.c:5665 [inline]
lock_acquire+0x1ab/0x520 kernel/locking/lockdep.c:5630
__mutex_lock_common kernel/locking/mutex.c:603 [inline]
__mutex_lock+0x14f/0x1610 kernel/locking/mutex.c:747
usb_stor_pre_reset+0x35/0x40 drivers/usb/storage/usb.c:230
usb_reset_device+0x37d/0x9a0 drivers/usb/core/hub.c:6109
r871xu_dev_remove+0x21a/0x270 drivers/staging/rtl8712/usb_intf.c:622
usb_unbind_interface+0x1bd/0x890 drivers/usb/core/driver.c:458
device_remove drivers/base/dd.c:545 [inline]
device_remove+0x11f/0x170 drivers/base/dd.c:537
__device_release_driver drivers/base/dd.c:1222 [inline]
device_release_driver_internal+0x1a7/0x2f0 drivers/base/dd.c:1248
usb_driver_release_interface+0x102/0x180 drivers/usb/core/driver.c:627
usb_forced_unbind_intf+0x4d/0xa0 drivers/usb/core/driver.c:1118
usb_reset_device+0x39b/0x9a0 drivers/usb/core/hub.c:6114
This turned out not to be an error in usb-storage but rather a nested
device reset attempt. That is, as the rtl8712 driver was being
unbound from a composite device in preparation for an unrelated USB
reset (that driver does not have pre_reset or post_reset callbacks),
its ->remove routine called usb_reset_device() -- thus nesting one
reset call within another.
Performing a reset as part of disconnect processing is a questionable
practice at best. However, the bug report points out that the USB
core does not have any protection against nested resets. Adding a
reset_in_progress flag and testing it will prevent such errors in the
future.
In the Linux kernel, the following vulnerability has been resolved:
media: mceusb: Use new usb_control_msg_*() routines
Automatic kernel fuzzing led to a WARN about invalid pipe direction in
the mceusb driver:
------------[ cut here ]------------
usb 6-1: BOGUS control dir, pipe 80000380 doesn't match bRequestType 40
WARNING: CPU: 0 PID: 2465 at drivers/usb/core/urb.c:410
usb_submit_urb+0x1326/0x1820 drivers/usb/core/urb.c:410
Modules linked in:
CPU: 0 PID: 2465 Comm: kworker/0:2 Not tainted 5.19.0-rc4-00208-g69cb6c6556ad #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.13.0-1ubuntu1.1 04/01/2014
Workqueue: usb_hub_wq hub_event
RIP: 0010:usb_submit_urb+0x1326/0x1820 drivers/usb/core/urb.c:410
Code: 7c 24 40 e8 ac 23 91 fd 48 8b 7c 24 40 e8 b2 70 1b ff 45 89 e8
44 89 f1 4c 89 e2 48 89 c6 48 c7 c7 a0 30 a9 86 e8 48 07 11 02 <0f> 0b
e9 1c f0 ff ff e8 7e 23 91 fd 0f b6 1d 63 22 83 05 31 ff 41
RSP: 0018:ffffc900032becf0 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffff8881100f3058 RCX: 0000000000000000
RDX: ffffc90004961000 RSI: ffff888114c6d580 RDI: fffff52000657d90
RBP: ffff888105ad90f0 R08: ffffffff812c3638 R09: 0000000000000000
R10: 0000000000000005 R11: ffffed1023504ef1 R12: ffff888105ad9000
R13: 0000000000000040 R14: 0000000080000380 R15: ffff88810ba96500
FS: 0000000000000000(0000) GS:ffff88811a800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007ffe810bda58 CR3: 000000010b720000 CR4: 0000000000350ef0
Call Trace:
<TASK>
usb_start_wait_urb+0x101/0x4c0 drivers/usb/core/message.c:58
usb_internal_control_msg drivers/usb/core/message.c:102 [inline]
usb_control_msg+0x31c/0x4a0 drivers/usb/core/message.c:153
mceusb_gen1_init drivers/media/rc/mceusb.c:1431 [inline]
mceusb_dev_probe+0x258e/0x33f0 drivers/media/rc/mceusb.c:1807
The reason for the warning is clear enough; the driver sends an
unusual read request on endpoint 0 but does not set the USB_DIR_IN bit
in the bRequestType field.
More importantly, the whole situation can be avoided and the driver
simplified by converting it over to the relatively new
usb_control_msg_recv() and usb_control_msg_send() routines. That's
what this fix does.
In the Linux kernel, the following vulnerability has been resolved:
cifs: fix small mempool leak in SMB2_negotiate()
In some cases of failure (dialect mismatches) in SMB2_negotiate(), after
the request is sent, the checks would return -EIO when they should be
rather setting rc = -EIO and jumping to neg_exit to free the response
buffer from mempool.
In the Linux kernel, the following vulnerability has been resolved:
binder: fix UAF of ref->proc caused by race condition
A transaction of type BINDER_TYPE_WEAK_HANDLE can fail to increment the
reference for a node. In this case, the target proc normally releases
the failed reference upon close as expected. However, if the target is
dying in parallel the call will race with binder_deferred_release(), so
the target could have released all of its references by now leaving the
cleanup of the new failed reference unhandled.
The transaction then ends and the target proc gets released making the
ref->proc now a dangling pointer. Later on, ref->node is closed and we
attempt to take spin_lock(&ref->proc->inner_lock), which leads to the
use-after-free bug reported below. Let's fix this by cleaning up the
failed reference on the spot instead of relying on the target to do so.
==================================================================
BUG: KASAN: use-after-free in _raw_spin_lock+0xa8/0x150
Write of size 4 at addr ffff5ca207094238 by task kworker/1:0/590
CPU: 1 PID: 590 Comm: kworker/1:0 Not tainted 5.19.0-rc8 #10
Hardware name: linux,dummy-virt (DT)
Workqueue: events binder_deferred_func
Call trace:
dump_backtrace.part.0+0x1d0/0x1e0
show_stack+0x18/0x70
dump_stack_lvl+0x68/0x84
print_report+0x2e4/0x61c
kasan_report+0xa4/0x110
kasan_check_range+0xfc/0x1a4
__kasan_check_write+0x3c/0x50
_raw_spin_lock+0xa8/0x150
binder_deferred_func+0x5e0/0x9b0
process_one_work+0x38c/0x5f0
worker_thread+0x9c/0x694
kthread+0x188/0x190
ret_from_fork+0x10/0x20
In the Linux kernel, the following vulnerability has been resolved:
tty: n_gsm: add sanity check for gsm->receive in gsm_receive_buf()
A null pointer dereference can happen when attempting to access the
"gsm->receive()" function in gsmld_receive_buf(). Currently, the code
assumes that gsm->recieve is only called after MUX activation.
Since the gsmld_receive_buf() function can be accessed without the need to
initialize the MUX, the gsm->receive() function will not be set and a
NULL pointer dereference will occur.
Fix this by avoiding the call to "gsm->receive()" in case the function is
not initialized by adding a sanity check.
Call Trace:
<TASK>
gsmld_receive_buf+0x1c2/0x2f0 drivers/tty/n_gsm.c:2861
tiocsti drivers/tty/tty_io.c:2293 [inline]
tty_ioctl+0xa75/0x15d0 drivers/tty/tty_io.c:2692
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:870 [inline]
__se_sys_ioctl fs/ioctl.c:856 [inline]
__x64_sys_ioctl+0x193/0x200 fs/ioctl.c:856
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: Fix UAF in ieee80211_scan_rx()
ieee80211_scan_rx() tries to access scan_req->flags after a
null check, but a UAF is observed when the scan is completed
and __ieee80211_scan_completed() executes, which then calls
cfg80211_scan_done() leading to the freeing of scan_req.
Since scan_req is rcu_dereference()'d, prevent the racing in
__ieee80211_scan_completed() by ensuring that from mac80211's
POV it is no longer accessed from an RCU read critical section
before we call cfg80211_scan_done().
In the Linux kernel, the following vulnerability has been resolved:
alloc_tag: allocate percpu counters for module tags dynamically
When a module gets unloaded it checks whether any of its tags are still in
use and if so, we keep the memory containing module's allocation tags
alive until all tags are unused. However percpu counters referenced by
the tags are freed by free_module(). This will lead to UAF if the memory
allocated by a module is accessed after module was unloaded.
To fix this we allocate percpu counters for module allocation tags
dynamically and we keep it alive for tags which are still in use after
module unloading. This also removes the requirement of a larger
PERCPU_MODULE_RESERVE when memory allocation profiling is enabled because
percpu memory for counters does not need to be reserved anymore.
In the Linux kernel, the following vulnerability has been resolved:
platform/x86: dell-wmi-sysman: Avoid buffer overflow in current_password_store()
If the 'buf' array received from the user contains an empty string, the
'length' variable will be zero. Accessing the 'buf' array element with
index 'length - 1' will result in a buffer overflow.
Add a check for an empty string.
Found by Linux Verification Center (linuxtesting.org) with SVACE.