Vulnerabilities
Vulnerable Software
Security Vulnerabilities - CVEs Published In May 2024
In the Linux kernel, the following vulnerability has been resolved: net_sched: fix NULL deref in fifo_set_limit() syzbot reported another NULL deref in fifo_set_limit() [1] I could repro the issue with : unshare -n tc qd add dev lo root handle 1:0 tbf limit 200000 burst 70000 rate 100Mbit tc qd replace dev lo parent 1:0 pfifo_fast tc qd change dev lo root handle 1:0 tbf limit 300000 burst 70000 rate 100Mbit pfifo_fast does not have a change() operation. Make fifo_set_limit() more robust about this. [1] BUG: kernel NULL pointer dereference, address: 0000000000000000 PGD 1cf99067 P4D 1cf99067 PUD 7ca49067 PMD 0 Oops: 0010 [#1] PREEMPT SMP KASAN CPU: 1 PID: 14443 Comm: syz-executor959 Not tainted 5.15.0-rc3-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:0x0 Code: Unable to access opcode bytes at RIP 0xffffffffffffffd6. RSP: 0018:ffffc9000e2f7310 EFLAGS: 00010246 RAX: dffffc0000000000 RBX: ffffffff8d6ecc00 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffff888024c27910 RDI: ffff888071e34000 RBP: ffff888071e34000 R08: 0000000000000001 R09: ffffffff8fcfb947 R10: 0000000000000001 R11: 0000000000000000 R12: ffff888024c27910 R13: ffff888071e34018 R14: 0000000000000000 R15: ffff88801ef74800 FS: 00007f321d897700(0000) GS:ffff8880b9d00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffffffffffffd6 CR3: 00000000722c3000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: fifo_set_limit net/sched/sch_fifo.c:242 [inline] fifo_set_limit+0x198/0x210 net/sched/sch_fifo.c:227 tbf_change+0x6ec/0x16d0 net/sched/sch_tbf.c:418 qdisc_change net/sched/sch_api.c:1332 [inline] tc_modify_qdisc+0xd9a/0x1a60 net/sched/sch_api.c:1634 rtnetlink_rcv_msg+0x413/0xb80 net/core/rtnetlink.c:5572 netlink_rcv_skb+0x153/0x420 net/netlink/af_netlink.c:2504 netlink_unicast_kernel net/netlink/af_netlink.c:1314 [inline] netlink_unicast+0x533/0x7d0 net/netlink/af_netlink.c:1340 netlink_sendmsg+0x86d/0xdb0 net/netlink/af_netlink.c:1929 sock_sendmsg_nosec net/socket.c:704 [inline] sock_sendmsg+0xcf/0x120 net/socket.c:724 ____sys_sendmsg+0x6e8/0x810 net/socket.c:2409 ___sys_sendmsg+0xf3/0x170 net/socket.c:2463 __sys_sendmsg+0xe5/0x1b0 net/socket.c:2492 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae
CVSS Score
5.5
EPSS Score
0.0
Published
2024-05-21
In the Linux kernel, the following vulnerability has been resolved: net/sched: sch_taprio: properly cancel timer from taprio_destroy() There is a comment in qdisc_create() about us not calling ops->reset() in some cases. err_out4: /* * Any broken qdiscs that would require a ops->reset() here? * The qdisc was never in action so it shouldn't be necessary. */ As taprio sets a timer before actually receiving a packet, we need to cancel it from ops->destroy, just in case ops->reset has not been called. syzbot reported: ODEBUG: free active (active state 0) object type: hrtimer hint: advance_sched+0x0/0x9a0 arch/x86/include/asm/atomic64_64.h:22 WARNING: CPU: 0 PID: 8441 at lib/debugobjects.c:505 debug_print_object+0x16e/0x250 lib/debugobjects.c:505 Modules linked in: CPU: 0 PID: 8441 Comm: syz-executor813 Not tainted 5.14.0-rc6-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:debug_print_object+0x16e/0x250 lib/debugobjects.c:505 Code: ff df 48 89 fa 48 c1 ea 03 80 3c 02 00 0f 85 af 00 00 00 48 8b 14 dd e0 d3 e3 89 4c 89 ee 48 c7 c7 e0 c7 e3 89 e8 5b 86 11 05 <0f> 0b 83 05 85 03 92 09 01 48 83 c4 18 5b 5d 41 5c 41 5d 41 5e c3 RSP: 0018:ffffc9000130f330 EFLAGS: 00010282 RAX: 0000000000000000 RBX: 0000000000000003 RCX: 0000000000000000 RDX: ffff88802baeb880 RSI: ffffffff815d87b5 RDI: fffff52000261e58 RBP: 0000000000000001 R08: 0000000000000000 R09: 0000000000000000 R10: ffffffff815d25ee R11: 0000000000000000 R12: ffffffff898dd020 R13: ffffffff89e3ce20 R14: ffffffff81653630 R15: dffffc0000000000 FS: 0000000000f0d300(0000) GS:ffff8880b9d00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007ffb64b3e000 CR3: 0000000036557000 CR4: 00000000001506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: __debug_check_no_obj_freed lib/debugobjects.c:987 [inline] debug_check_no_obj_freed+0x301/0x420 lib/debugobjects.c:1018 slab_free_hook mm/slub.c:1603 [inline] slab_free_freelist_hook+0x171/0x240 mm/slub.c:1653 slab_free mm/slub.c:3213 [inline] kfree+0xe4/0x540 mm/slub.c:4267 qdisc_create+0xbcf/0x1320 net/sched/sch_api.c:1299 tc_modify_qdisc+0x4c8/0x1a60 net/sched/sch_api.c:1663 rtnetlink_rcv_msg+0x413/0xb80 net/core/rtnetlink.c:5571 netlink_rcv_skb+0x153/0x420 net/netlink/af_netlink.c:2504 netlink_unicast_kernel net/netlink/af_netlink.c:1314 [inline] netlink_unicast+0x533/0x7d0 net/netlink/af_netlink.c:1340 netlink_sendmsg+0x86d/0xdb0 net/netlink/af_netlink.c:1929 sock_sendmsg_nosec net/socket.c:704 [inline] sock_sendmsg+0xcf/0x120 net/socket.c:724 ____sys_sendmsg+0x6e8/0x810 net/socket.c:2403 ___sys_sendmsg+0xf3/0x170 net/socket.c:2457 __sys_sendmsg+0xe5/0x1b0 net/socket.c:2486 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
CVSS Score
5.5
EPSS Score
0.0
Published
2024-05-21
In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: fix a potential ttm->sg memory leak Memory is allocated for ttm->sg by kmalloc in kfd_mem_dmamap_userptr, but isn't freed by kfree in kfd_mem_dmaunmap_userptr. Free it!
CVSS Score
5.5
EPSS Score
0.0
Published
2024-05-21
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: handle the case of pci_channel_io_frozen only in amdgpu_pci_resume In current code, when a PCI error state pci_channel_io_normal is detectd, it will report PCI_ERS_RESULT_CAN_RECOVER status to PCI driver, and PCI driver will continue the execution of PCI resume callback report_resume by pci_walk_bridge, and the callback will go into amdgpu_pci_resume finally, where write lock is releasd unconditionally without acquiring such lock first. In this case, a deadlock will happen when other threads start to acquire the read lock. To fix this, add a member in amdgpu_device strucutre to cache pci_channel_state, and only continue the execution in amdgpu_pci_resume when it's pci_channel_io_frozen.
CVSS Score
5.5
EPSS Score
0.001
Published
2024-05-21
In the Linux kernel, the following vulnerability has been resolved: drm/nouveau/kms/nv50-: fix file release memory leak When using single_open() for opening, single_release() should be called, otherwise the 'op' allocated in single_open() will be leaked.
CVSS Score
5.5
EPSS Score
0.0
Published
2024-05-21
In the Linux kernel, the following vulnerability has been resolved: drm/nouveau/debugfs: fix file release memory leak When using single_open() for opening, single_release() should be called, otherwise the 'op' allocated in single_open() will be leaked.
CVSS Score
5.5
EPSS Score
0.0
Published
2024-05-21
In the Linux kernel, the following vulnerability has been resolved: i40e: Fix freeing of uninitialized misc IRQ vector When VSI set up failed in i40e_probe() as part of PF switch set up driver was trying to free misc IRQ vectors in i40e_clear_interrupt_scheme and produced a kernel Oops: Trying to free already-free IRQ 266 WARNING: CPU: 0 PID: 5 at kernel/irq/manage.c:1731 __free_irq+0x9a/0x300 Workqueue: events work_for_cpu_fn RIP: 0010:__free_irq+0x9a/0x300 Call Trace: ? synchronize_irq+0x3a/0xa0 free_irq+0x2e/0x60 i40e_clear_interrupt_scheme+0x53/0x190 [i40e] i40e_probe.part.108+0x134b/0x1a40 [i40e] ? kmem_cache_alloc+0x158/0x1c0 ? acpi_ut_update_ref_count.part.1+0x8e/0x345 ? acpi_ut_update_object_reference+0x15e/0x1e2 ? strstr+0x21/0x70 ? irq_get_irq_data+0xa/0x20 ? mp_check_pin_attr+0x13/0xc0 ? irq_get_irq_data+0xa/0x20 ? mp_map_pin_to_irq+0xd3/0x2f0 ? acpi_register_gsi_ioapic+0x93/0x170 ? pci_conf1_read+0xa4/0x100 ? pci_bus_read_config_word+0x49/0x70 ? do_pci_enable_device+0xcc/0x100 local_pci_probe+0x41/0x90 work_for_cpu_fn+0x16/0x20 process_one_work+0x1a7/0x360 worker_thread+0x1cf/0x390 ? create_worker+0x1a0/0x1a0 kthread+0x112/0x130 ? kthread_flush_work_fn+0x10/0x10 ret_from_fork+0x1f/0x40 The problem is that at that point misc IRQ vectors were not allocated yet and we get a call trace that driver is trying to free already free IRQ vectors. Add a check in i40e_clear_interrupt_scheme for __I40E_MISC_IRQ_REQUESTED PF state before calling i40e_free_misc_vector. This state is set only if misc IRQ vectors were properly initialized.
CVSS Score
5.5
EPSS Score
0.0
Published
2024-05-21
In the Linux kernel, the following vulnerability has been resolved: i2c: acpi: fix resource leak in reconfiguration device addition acpi_i2c_find_adapter_by_handle() calls bus_find_device() which takes a reference on the adapter which is never released which will result in a reference count leak and render the adapter unremovable. Make sure to put the adapter after creating the client in the same manner that we do for OF. [wsa: fixed title]
CVSS Score
5.5
EPSS Score
0.0
Published
2024-05-21
In the Linux kernel, the following vulnerability has been resolved: HID: usbhid: free raw_report buffers in usbhid_stop Free the unsent raw_report buffers when the device is removed. Fixes a memory leak reported by syzbot at: https://syzkaller.appspot.com/bug?id=7b4fa7cb1a7c2d3342a2a8a6c53371c8c418ab47
CVSS Score
5.5
EPSS Score
0.0
Published
2024-05-21
In the Linux kernel, the following vulnerability has been resolved: ext4: add error checking to ext4_ext_replay_set_iblocks() If the call to ext4_map_blocks() fails due to an corrupted file system, ext4_ext_replay_set_iblocks() can get stuck in an infinite loop. This could be reproduced by running generic/526 with a file system that has inline_data and fast_commit enabled. The system will repeatedly log to the console: EXT4-fs warning (device dm-3): ext4_block_to_path:105: block 1074800922 > max in inode 131076 and the stack that it gets stuck in is: ext4_block_to_path+0xe3/0x130 ext4_ind_map_blocks+0x93/0x690 ext4_map_blocks+0x100/0x660 skip_hole+0x47/0x70 ext4_ext_replay_set_iblocks+0x223/0x440 ext4_fc_replay_inode+0x29e/0x3b0 ext4_fc_replay+0x278/0x550 do_one_pass+0x646/0xc10 jbd2_journal_recover+0x14a/0x270 jbd2_journal_load+0xc4/0x150 ext4_load_journal+0x1f3/0x490 ext4_fill_super+0x22d4/0x2c00 With this patch, generic/526 still fails, but system is no longer locking up in a tight loop. It's likely the root casue is that fast_commit replay is corrupting file systems with inline_data, and we probably need to add better error handling in the fast commit replay code path beyond what is done here, which essentially just breaks the infinite loop without reporting the to the higher levels of the code.
CVSS Score
5.5
EPSS Score
0.0
Published
2024-05-21


Contact Us

Shodan ® - All rights reserved