Security Vulnerabilities
- CVEs Published In May 2024
In the Linux kernel, the following vulnerability has been resolved:
net: ll_temac: Make sure to free skb when it is completely used
With the skb pointer piggy-backed on the TX BD, we have a simple and
efficient way to free the skb buffer when the frame has been transmitted.
But in order to avoid freeing the skb while there are still fragments from
the skb in use, we need to piggy-back on the TX BD of the skb, not the
first.
Without this, we are doing use-after-free on the DMA side, when the first
BD of a multi TX BD packet is seen as completed in xmit_done, and the
remaining BDs are still being processed.
In the Linux kernel, the following vulnerability has been resolved:
mac80211: fix deadlock in AP/VLAN handling
Syzbot reports that when you have AP_VLAN interfaces that are up
and close the AP interface they belong to, we get a deadlock. No
surprise - since we dev_close() them with the wiphy mutex held,
which goes back into the netdev notifier in cfg80211 and tries to
acquire the wiphy mutex there.
To fix this, we need to do two things:
1) prevent changing iftype while AP_VLANs are up, we can't
easily fix this case since cfg80211 already calls us with
the wiphy mutex held, but change_interface() is relatively
rare in drivers anyway, so changing iftype isn't used much
(and userspace has to fall back to down/change/up anyway)
2) pull the dev_close() loop over VLANs out of the wiphy mutex
section in the normal stop case
In the Linux kernel, the following vulnerability has been resolved:
x86/fpu: Invalidate FPU state after a failed XRSTOR from a user buffer
Both Intel and AMD consider it to be architecturally valid for XRSTOR to
fail with #PF but nonetheless change the register state. The actual
conditions under which this might occur are unclear [1], but it seems
plausible that this might be triggered if one sibling thread unmaps a page
and invalidates the shared TLB while another sibling thread is executing
XRSTOR on the page in question.
__fpu__restore_sig() can execute XRSTOR while the hardware registers
are preserved on behalf of a different victim task (using the
fpu_fpregs_owner_ctx mechanism), and, in theory, XRSTOR could fail but
modify the registers.
If this happens, then there is a window in which __fpu__restore_sig()
could schedule out and the victim task could schedule back in without
reloading its own FPU registers. This would result in part of the FPU
state that __fpu__restore_sig() was attempting to load leaking into the
victim task's user-visible state.
Invalidate preserved FPU registers on XRSTOR failure to prevent this
situation from corrupting any state.
[1] Frequent readers of the errata lists might imagine "complex
microarchitectural conditions".
In the Linux kernel, the following vulnerability has been resolved:
x86/fpu: Prevent state corruption in __fpu__restore_sig()
The non-compacted slowpath uses __copy_from_user() and copies the entire
user buffer into the kernel buffer, verbatim. This means that the kernel
buffer may now contain entirely invalid state on which XRSTOR will #GP.
validate_user_xstate_header() can detect some of that corruption, but that
leaves the onus on callers to clear the buffer.
Prior to XSAVES support, it was possible just to reinitialize the buffer,
completely, but with supervisor states that is not longer possible as the
buffer clearing code split got it backwards. Fixing that is possible but
not corrupting the state in the first place is more robust.
Avoid corruption of the kernel XSAVE buffer by using copy_user_to_xstate()
which validates the XSAVE header contents before copying the actual states
to the kernel. copy_user_to_xstate() was previously only called for
compacted-format kernel buffers, but it works for both compacted and
non-compacted forms.
Using it for the non-compacted form is slower because of multiple
__copy_from_user() operations, but that cost is less important than robust
code in an already slow path.
[ Changelog polished by Dave Hansen ]
Umbraco CMS is an ASP.NET CMS used by more than 730.000 websites. Stored Cross-site scripting (XSS) enable attackers that have access to backoffice to bring malicious content into a website or application. This vulnerability has been patched in version(s) 8.18.13, 10.8.4, 12.3.7, 13.1.1 by implementing IHtmlSanitizer.
An issue in Cesanta mjs 2.20.0 allows a remote attacker to cause a denial of service via the mjs_array_length function in the mjs.c file.
An issue in Cesanta mjs 2.20.0 allows a remote attacker to cause a denial of service via the mjs_mk_ffi_sig function in the mjs.c file.
An issue in Cesanta mjs 2.20.0 allows a remote attacker to cause a denial of service via the mjs_do_gc function in the mjs.c file.
The ElementsKit Pro plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the ‘url’ parameter in versions up to, and including, 3.6.1 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with contributor-level permissions and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page.
Umbraco is an ASP.NET CMS used by more than 730.000 websites. Umbraco has an endpoint that is vulnerable to open redirects. The endpoint is protected so it requires the user to be signed into backoffice before the vulnerable is exposed. This vulnerability has been patched in version(s) 8.18.14, 10.8.6, 12.3.10 and 13.3.1.