Security Vulnerabilities
- CVEs Published In May 2024
In the Linux kernel, the following vulnerability has been resolved:
usb: typec: tcpm: cancel vdm and state machine hrtimer when unregister tcpm port
A pending hrtimer may expire after the kthread_worker of tcpm port
is destroyed, see below kernel dump when do module unload, fix it
by cancel the 2 hrtimers.
[ 111.517018] Unable to handle kernel paging request at virtual address ffff8000118cb880
[ 111.518786] blk_update_request: I/O error, dev sda, sector 60061185 op 0x0:(READ) flags 0x0 phys_seg 1 prio class 0
[ 111.526594] Mem abort info:
[ 111.526597] ESR = 0x96000047
[ 111.526600] EC = 0x25: DABT (current EL), IL = 32 bits
[ 111.526604] SET = 0, FnV = 0
[ 111.526607] EA = 0, S1PTW = 0
[ 111.526610] Data abort info:
[ 111.526612] ISV = 0, ISS = 0x00000047
[ 111.526615] CM = 0, WnR = 1
[ 111.526619] swapper pgtable: 4k pages, 48-bit VAs, pgdp=0000000041d75000
[ 111.526623] [ffff8000118cb880] pgd=10000001bffff003, p4d=10000001bffff003, pud=10000001bfffe003, pmd=10000001bfffa003, pte=0000000000000000
[ 111.526642] Internal error: Oops: 96000047 [#1] PREEMPT SMP
[ 111.526647] Modules linked in: dwc3_imx8mp dwc3 phy_fsl_imx8mq_usb [last unloaded: tcpci]
[ 111.526663] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.13.0-rc4-00927-gebbe9dbd802c-dirty #36
[ 111.526670] Hardware name: NXP i.MX8MPlus EVK board (DT)
[ 111.526674] pstate: 800000c5 (Nzcv daIF -PAN -UAO -TCO BTYPE=--)
[ 111.526681] pc : queued_spin_lock_slowpath+0x1a0/0x390
[ 111.526695] lr : _raw_spin_lock_irqsave+0x88/0xb4
[ 111.526703] sp : ffff800010003e20
[ 111.526706] x29: ffff800010003e20 x28: ffff00017f380180
[ 111.537156] buffer_io_error: 6 callbacks suppressed
[ 111.537162] Buffer I/O error on dev sda1, logical block 60040704, async page read
[ 111.539932] x27: ffff00017f3801c0
[ 111.539938] x26: ffff800010ba2490 x25: 0000000000000000 x24: 0000000000000001
[ 111.543025] blk_update_request: I/O error, dev sda, sector 60061186 op 0x0:(READ) flags 0x0 phys_seg 7 prio class 0
[ 111.548304]
[ 111.548306] x23: 00000000000000c0 x22: ffff0000c2a9f184 x21: ffff00017f380180
[ 111.551374] Buffer I/O error on dev sda1, logical block 60040705, async page read
[ 111.554499]
[ 111.554503] x20: ffff0000c5f14210 x19: 00000000000000c0 x18: 0000000000000000
[ 111.557391] Buffer I/O error on dev sda1, logical block 60040706, async page read
[ 111.561218]
[ 111.561222] x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
[ 111.564205] Buffer I/O error on dev sda1, logical block 60040707, async page read
[ 111.570887] x14: 00000000000000f5 x13: 0000000000000001 x12: 0000000000000040
[ 111.570902] x11: ffff0000c05ac6d8
[ 111.583420] Buffer I/O error on dev sda1, logical block 60040708, async page read
[ 111.588978] x10: 0000000000000000 x9 : 0000000000040000
[ 111.588988] x8 : 0000000000000000
[ 111.597173] Buffer I/O error on dev sda1, logical block 60040709, async page read
[ 111.605766] x7 : ffff00017f384880 x6 : ffff8000118cb880
[ 111.605777] x5 : ffff00017f384880
[ 111.611094] Buffer I/O error on dev sda1, logical block 60040710, async page read
[ 111.617086] x4 : 0000000000000000 x3 : ffff0000c2a9f184
[ 111.617096] x2 : ffff8000118cb880
[ 111.622242] Buffer I/O error on dev sda1, logical block 60040711, async page read
[ 111.626927] x1 : ffff8000118cb880 x0 : ffff00017f384888
[ 111.626938] Call trace:
[ 111.626942] queued_spin_lock_slowpath+0x1a0/0x390
[ 111.795809] kthread_queue_work+0x30/0xc0
[ 111.799828] state_machine_timer_handler+0x20/0x30
[ 111.804624] __hrtimer_run_queues+0x140/0x1e0
[ 111.808990] hrtimer_interrupt+0xec/0x2c0
[ 111.813004] arch_timer_handler_phys+0x38/0x50
[ 111.817456] handle_percpu_devid_irq+0x88/0x150
[ 111.821991] __handle_domain_irq+0x80/0xe0
[ 111.826093] gic_handle_irq+0xc0/0x140
[ 111.829848] el1_irq+0xbc/0x154
[ 111.832991] arch_cpu_idle+0x1c/0x2c
[ 111.836572] default_idle_call+0x24/0x6c
[ 111.840497] do_idle+0x238/0x2ac
[ 1
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
usb: dwc3: ep0: fix NULL pointer exception
There is no validation of the index from dwc3_wIndex_to_dep() and we might
be referring a non-existing ep and trigger a NULL pointer exception. In
certain configurations we might use fewer eps and the index might wrongly
indicate a larger ep index than existing.
By adding this validation from the patch we can actually report a wrong
index back to the caller.
In our usecase we are using a composite device on an older kernel, but
upstream might use this fix also. Unfortunately, I cannot describe the
hardware for others to reproduce the issue as it is a proprietary
implementation.
[ 82.958261] Unable to handle kernel NULL pointer dereference at virtual address 00000000000000a4
[ 82.966891] Mem abort info:
[ 82.969663] ESR = 0x96000006
[ 82.972703] Exception class = DABT (current EL), IL = 32 bits
[ 82.978603] SET = 0, FnV = 0
[ 82.981642] EA = 0, S1PTW = 0
[ 82.984765] Data abort info:
[ 82.987631] ISV = 0, ISS = 0x00000006
[ 82.991449] CM = 0, WnR = 0
[ 82.994409] user pgtable: 4k pages, 39-bit VAs, pgdp = 00000000c6210ccc
[ 83.000999] [00000000000000a4] pgd=0000000053aa5003, pud=0000000053aa5003, pmd=0000000000000000
[ 83.009685] Internal error: Oops: 96000006 [#1] PREEMPT SMP
[ 83.026433] Process irq/62-dwc3 (pid: 303, stack limit = 0x000000003985154c)
[ 83.033470] CPU: 0 PID: 303 Comm: irq/62-dwc3 Not tainted 4.19.124 #1
[ 83.044836] pstate: 60000085 (nZCv daIf -PAN -UAO)
[ 83.049628] pc : dwc3_ep0_handle_feature+0x414/0x43c
[ 83.054558] lr : dwc3_ep0_interrupt+0x3b4/0xc94
...
[ 83.141788] Call trace:
[ 83.144227] dwc3_ep0_handle_feature+0x414/0x43c
[ 83.148823] dwc3_ep0_interrupt+0x3b4/0xc94
[ 83.181546] ---[ end trace aac6b5267d84c32f ]---
In the Linux kernel, the following vulnerability has been resolved:
usb: fix various gadgets null ptr deref on 10gbps cabling.
This avoids a null pointer dereference in
f_{ecm,eem,hid,loopback,printer,rndis,serial,sourcesink,subset,tcm}
by simply reusing the 5gbps config for 10gbps.
In the Linux kernel, the following vulnerability has been resolved:
usb: cdnsp: Fix deadlock issue in cdnsp_thread_irq_handler
Patch fixes the following critical issue caused by deadlock which has been
detected during testing NCM class:
smp: csd: Detected non-responsive CSD lock (#1) on CPU#0
smp: csd: CSD lock (#1) unresponsive.
....
RIP: 0010:native_queued_spin_lock_slowpath+0x61/0x1d0
RSP: 0018:ffffbc494011cde0 EFLAGS: 00000002
RAX: 0000000000000101 RBX: ffff9ee8116b4a68 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff9ee8116b4658
RBP: ffffbc494011cde0 R08: 0000000000000001 R09: 0000000000000000
R10: ffff9ee8116b4670 R11: 0000000000000000 R12: ffff9ee8116b4658
R13: ffff9ee8116b4670 R14: 0000000000000246 R15: ffff9ee8116b4658
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f7bcc41a830 CR3: 000000007a612003 CR4: 00000000001706e0
Call Trace:
<IRQ>
do_raw_spin_lock+0xc0/0xd0
_raw_spin_lock_irqsave+0x95/0xa0
cdnsp_gadget_ep_queue.cold+0x88/0x107 [cdnsp_udc_pci]
usb_ep_queue+0x35/0x110
eth_start_xmit+0x220/0x3d0 [u_ether]
ncm_tx_timeout+0x34/0x40 [usb_f_ncm]
? ncm_free_inst+0x50/0x50 [usb_f_ncm]
__hrtimer_run_queues+0xac/0x440
hrtimer_run_softirq+0x8c/0xb0
__do_softirq+0xcf/0x428
asm_call_irq_on_stack+0x12/0x20
</IRQ>
do_softirq_own_stack+0x61/0x70
irq_exit_rcu+0xc1/0xd0
sysvec_apic_timer_interrupt+0x52/0xb0
asm_sysvec_apic_timer_interrupt+0x12/0x20
RIP: 0010:do_raw_spin_trylock+0x18/0x40
RSP: 0018:ffffbc494138bda8 EFLAGS: 00000246
RAX: 0000000000000000 RBX: ffff9ee8116b4658 RCX: 0000000000000000
RDX: 0000000000000001 RSI: 0000000000000000 RDI: ffff9ee8116b4658
RBP: ffffbc494138bda8 R08: 0000000000000001 R09: 0000000000000000
R10: ffff9ee8116b4670 R11: 0000000000000000 R12: ffff9ee8116b4658
R13: ffff9ee8116b4670 R14: ffff9ee7b5c73d80 R15: ffff9ee8116b4000
_raw_spin_lock+0x3d/0x70
? cdnsp_thread_irq_handler.cold+0x32/0x112c [cdnsp_udc_pci]
cdnsp_thread_irq_handler.cold+0x32/0x112c [cdnsp_udc_pci]
? cdnsp_remove_request+0x1f0/0x1f0 [cdnsp_udc_pci]
? cdnsp_thread_irq_handler+0x5/0xa0 [cdnsp_udc_pci]
? irq_thread+0xa0/0x1c0
irq_thread_fn+0x28/0x60
irq_thread+0x105/0x1c0
? __kthread_parkme+0x42/0x90
? irq_forced_thread_fn+0x90/0x90
? wake_threads_waitq+0x30/0x30
? irq_thread_check_affinity+0xe0/0xe0
kthread+0x12a/0x160
? kthread_park+0x90/0x90
ret_from_fork+0x22/0x30
The root cause of issue is spin_lock/spin_unlock instruction instead
spin_lock_irqsave/spin_lock_irqrestore in cdnsp_thread_irq_handler
function.
In the Linux kernel, the following vulnerability has been resolved:
usb: dwc3: gadget: Bail from dwc3_gadget_exit() if dwc->gadget is NULL
There exists a possible scenario in which dwc3_gadget_init() can fail:
during during host -> peripheral mode switch in dwc3_set_mode(), and
a pending gadget driver fails to bind. Then, if the DRD undergoes
another mode switch from peripheral->host the resulting
dwc3_gadget_exit() will attempt to reference an invalid and dangling
dwc->gadget pointer as well as call dma_free_coherent() on unmapped
DMA pointers.
The exact scenario can be reproduced as follows:
- Start DWC3 in peripheral mode
- Configure ConfigFS gadget with FunctionFS instance (or use g_ffs)
- Run FunctionFS userspace application (open EPs, write descriptors, etc)
- Bind gadget driver to DWC3's UDC
- Switch DWC3 to host mode
=> dwc3_gadget_exit() is called. usb_del_gadget() will put the
ConfigFS driver instance on the gadget_driver_pending_list
- Stop FunctionFS application (closes the ep files)
- Switch DWC3 to peripheral mode
=> dwc3_gadget_init() fails as usb_add_gadget() calls
check_pending_gadget_drivers() and attempts to rebind the UDC
to the ConfigFS gadget but fails with -19 (-ENODEV) because the
FFS instance is not in FFS_ACTIVE state (userspace has not
re-opened and written the descriptors yet, i.e. desc_ready!=0).
- Switch DWC3 back to host mode
=> dwc3_gadget_exit() is called again, but this time dwc->gadget
is invalid.
Although it can be argued that userspace should take responsibility
for ensuring that the FunctionFS application be ready prior to
allowing the composite driver bind to the UDC, failure to do so
should not result in a panic from the kernel driver.
Fix this by setting dwc->gadget to NULL in the failure path of
dwc3_gadget_init() and add a check to dwc3_gadget_exit() to bail out
unless the gadget pointer is valid.
In the Linux kernel, the following vulnerability has been resolved:
usb: dwc3-meson-g12a: fix usb2 PHY glue init when phy0 is disabled
When only PHY1 is used (for example on Odroid-HC4), the regmap init code
uses the usb2 ports when doesn't initialize the PHY1 regmap entry.
This fixes:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000020
...
pc : regmap_update_bits_base+0x40/0xa0
lr : dwc3_meson_g12a_usb2_init_phy+0x4c/0xf8
...
Call trace:
regmap_update_bits_base+0x40/0xa0
dwc3_meson_g12a_usb2_init_phy+0x4c/0xf8
dwc3_meson_g12a_usb2_init+0x7c/0xc8
dwc3_meson_g12a_usb_init+0x28/0x48
dwc3_meson_g12a_probe+0x298/0x540
platform_probe+0x70/0xe0
really_probe+0xf0/0x4d8
driver_probe_device+0xfc/0x168
...
In the Linux kernel, the following vulnerability has been resolved:
tracing: Correct the length check which causes memory corruption
We've suffered from severe kernel crashes due to memory corruption on
our production environment, like,
Call Trace:
[1640542.554277] general protection fault: 0000 [#1] SMP PTI
[1640542.554856] CPU: 17 PID: 26996 Comm: python Kdump: loaded Tainted:G
[1640542.556629] RIP: 0010:kmem_cache_alloc+0x90/0x190
[1640542.559074] RSP: 0018:ffffb16faa597df8 EFLAGS: 00010286
[1640542.559587] RAX: 0000000000000000 RBX: 0000000000400200 RCX:
0000000006e931bf
[1640542.560323] RDX: 0000000006e931be RSI: 0000000000400200 RDI:
ffff9a45ff004300
[1640542.560996] RBP: 0000000000400200 R08: 0000000000023420 R09:
0000000000000000
[1640542.561670] R10: 0000000000000000 R11: 0000000000000000 R12:
ffffffff9a20608d
[1640542.562366] R13: ffff9a45ff004300 R14: ffff9a45ff004300 R15:
696c662f65636976
[1640542.563128] FS: 00007f45d7c6f740(0000) GS:ffff9a45ff840000(0000)
knlGS:0000000000000000
[1640542.563937] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[1640542.564557] CR2: 00007f45d71311a0 CR3: 000000189d63e004 CR4:
00000000003606e0
[1640542.565279] DR0: 0000000000000000 DR1: 0000000000000000 DR2:
0000000000000000
[1640542.566069] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7:
0000000000000400
[1640542.566742] Call Trace:
[1640542.567009] anon_vma_clone+0x5d/0x170
[1640542.567417] __split_vma+0x91/0x1a0
[1640542.567777] do_munmap+0x2c6/0x320
[1640542.568128] vm_munmap+0x54/0x70
[1640542.569990] __x64_sys_munmap+0x22/0x30
[1640542.572005] do_syscall_64+0x5b/0x1b0
[1640542.573724] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[1640542.575642] RIP: 0033:0x7f45d6e61e27
James Wang has reproduced it stably on the latest 4.19 LTS.
After some debugging, we finally proved that it's due to ftrace
buffer out-of-bound access using a debug tool as follows:
[ 86.775200] BUG: Out-of-bounds write at addr 0xffff88aefe8b7000
[ 86.780806] no_context+0xdf/0x3c0
[ 86.784327] __do_page_fault+0x252/0x470
[ 86.788367] do_page_fault+0x32/0x140
[ 86.792145] page_fault+0x1e/0x30
[ 86.795576] strncpy_from_unsafe+0x66/0xb0
[ 86.799789] fetch_memory_string+0x25/0x40
[ 86.804002] fetch_deref_string+0x51/0x60
[ 86.808134] kprobe_trace_func+0x32d/0x3a0
[ 86.812347] kprobe_dispatcher+0x45/0x50
[ 86.816385] kprobe_ftrace_handler+0x90/0xf0
[ 86.820779] ftrace_ops_assist_func+0xa1/0x140
[ 86.825340] 0xffffffffc00750bf
[ 86.828603] do_sys_open+0x5/0x1f0
[ 86.832124] do_syscall_64+0x5b/0x1b0
[ 86.835900] entry_SYSCALL_64_after_hwframe+0x44/0xa9
commit b220c049d519 ("tracing: Check length before giving out
the filter buffer") adds length check to protect trace data
overflow introduced in 0fc1b09ff1ff, seems that this fix can't prevent
overflow entirely, the length check should also take the sizeof
entry->array[0] into account, since this array[0] is filled the
length of trace data and occupy addtional space and risk overflow.
In the Linux kernel, the following vulnerability has been resolved:
bcache: avoid oversized read request in cache missing code path
In the cache missing code path of cached device, if a proper location
from the internal B+ tree is matched for a cache miss range, function
cached_dev_cache_miss() will be called in cache_lookup_fn() in the
following code block,
[code block 1]
526 unsigned int sectors = KEY_INODE(k) == s->iop.inode
527 ? min_t(uint64_t, INT_MAX,
528 KEY_START(k) - bio->bi_iter.bi_sector)
529 : INT_MAX;
530 int ret = s->d->cache_miss(b, s, bio, sectors);
Here s->d->cache_miss() is the call backfunction pointer initialized as
cached_dev_cache_miss(), the last parameter 'sectors' is an important
hint to calculate the size of read request to backing device of the
missing cache data.
Current calculation in above code block may generate oversized value of
'sectors', which consequently may trigger 2 different potential kernel
panics by BUG() or BUG_ON() as listed below,
1) BUG_ON() inside bch_btree_insert_key(),
[code block 2]
886 BUG_ON(b->ops->is_extents && !KEY_SIZE(k));
2) BUG() inside biovec_slab(),
[code block 3]
51 default:
52 BUG();
53 return NULL;
All the above panics are original from cached_dev_cache_miss() by the
oversized parameter 'sectors'.
Inside cached_dev_cache_miss(), parameter 'sectors' is used to calculate
the size of data read from backing device for the cache missing. This
size is stored in s->insert_bio_sectors by the following lines of code,
[code block 4]
909 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
Then the actual key inserting to the internal B+ tree is generated and
stored in s->iop.replace_key by the following lines of code,
[code block 5]
911 s->iop.replace_key = KEY(s->iop.inode,
912 bio->bi_iter.bi_sector + s->insert_bio_sectors,
913 s->insert_bio_sectors);
The oversized parameter 'sectors' may trigger panic 1) by BUG_ON() from
the above code block.
And the bio sending to backing device for the missing data is allocated
with hint from s->insert_bio_sectors by the following lines of code,
[code block 6]
926 cache_bio = bio_alloc_bioset(GFP_NOWAIT,
927 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
928 &dc->disk.bio_split);
The oversized parameter 'sectors' may trigger panic 2) by BUG() from the
agove code block.
Now let me explain how the panics happen with the oversized 'sectors'.
In code block 5, replace_key is generated by macro KEY(). From the
definition of macro KEY(),
[code block 7]
71 #define KEY(inode, offset, size) \
72 ((struct bkey) { \
73 .high = (1ULL << 63) | ((__u64) (size) << 20) | (inode), \
74 .low = (offset) \
75 })
Here 'size' is 16bits width embedded in 64bits member 'high' of struct
bkey. But in code block 1, if "KEY_START(k) - bio->bi_iter.bi_sector" is
very probably to be larger than (1<<16) - 1, which makes the bkey size
calculation in code block 5 is overflowed. In one bug report the value
of parameter 'sectors' is 131072 (= 1 << 17), the overflowed 'sectors'
results the overflowed s->insert_bio_sectors in code block 4, then makes
size field of s->iop.replace_key to be 0 in code block 5. Then the 0-
sized s->iop.replace_key is inserted into the internal B+ tree as cache
missing check key (a special key to detect and avoid a racing between
normal write request and cache missing read request) as,
[code block 8]
915 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
Then the 0-sized s->iop.replace_key as 3rd parameter triggers the bkey
size check BUG_ON() in code block 2, and causes the kernel panic 1).
Another ke
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
ftrace: Do not blindly read the ip address in ftrace_bug()
It was reported that a bug on arm64 caused a bad ip address to be used for
updating into a nop in ftrace_init(), but the error path (rightfully)
returned -EINVAL and not -EFAULT, as the bug caused more than one error to
occur. But because -EINVAL was returned, the ftrace_bug() tried to report
what was at the location of the ip address, and read it directly. This
caused the machine to panic, as the ip was not pointing to a valid memory
address.
Instead, read the ip address with copy_from_kernel_nofault() to safely
access the memory, and if it faults, report that the address faulted,
otherwise report what was in that location.
In the Linux kernel, the following vulnerability has been resolved:
mac80211: fix skb length check in ieee80211_scan_rx()
Replace hard-coded compile-time constants for header length check
with dynamic determination based on the frame type. Otherwise, we
hit a validation WARN_ON in cfg80211 later.
[style fixes, reword commit message]