Security Vulnerabilities
- CVEs Published In May 2024
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: fix a NULL pointer dereference in amdgpu_dm_i2c_xfer()
When ddc_service_construct() is called, it explicitly checks both the
link type and whether there is something on the link which will
dictate whether the pin is marked as hw_supported.
If the pin isn't set or the link is not set (such as from
unloading/reloading amdgpu in an IGT test) then fail the
amdgpu_dm_i2c_xfer() call.
In the Linux kernel, the following vulnerability has been resolved:
s390/dasd: protect device queue against concurrent access
In dasd_profile_start() the amount of requests on the device queue are
counted. The access to the device queue is unprotected against
concurrent access. With a lot of parallel I/O, especially with alias
devices enabled, the device queue can change while dasd_profile_start()
is accessing the queue. In the worst case this leads to a kernel panic
due to incorrect pointer accesses.
Fix this by taking the device lock before accessing the queue and
counting the requests. Additionally the check for a valid profile data
pointer can be done earlier to avoid unnecessary locking in a hot path.
In the Linux kernel, the following vulnerability has been resolved:
net/smc: avoid data corruption caused by decline
We found a data corruption issue during testing of SMC-R on Redis
applications.
The benchmark has a low probability of reporting a strange error as
shown below.
"Error: Protocol error, got "\xe2" as reply type byte"
Finally, we found that the retrieved error data was as follows:
0xE2 0xD4 0xC3 0xD9 0x04 0x00 0x2C 0x20 0xA6 0x56 0x00 0x16 0x3E 0x0C
0xCB 0x04 0x02 0x01 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0xE2
It is quite obvious that this is a SMC DECLINE message, which means that
the applications received SMC protocol message.
We found that this was caused by the following situations:
client server
¦ clc proposal
------------->
¦ clc accept
<-------------
¦ clc confirm
------------->
wait llc confirm
send llc confirm
¦failed llc confirm
¦ x------
(after 2s)timeout
wait llc confirm rsp
wait decline
(after 1s) timeout
(after 2s) timeout
¦ decline
-------------->
¦ decline
<--------------
As a result, a decline message was sent in the implementation, and this
message was read from TCP by the already-fallback connection.
This patch double the client timeout as 2x of the server value,
With this simple change, the Decline messages should never cross or
collide (during Confirm link timeout).
This issue requires an immediate solution, since the protocol updates
involve a more long-term solution.
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix dfs-radar and temperature event locking
The ath12k active pdevs are protected by RCU but the DFS-radar and
temperature event handling code calling ath12k_mac_get_ar_by_pdev_id()
was not marked as a read-side critical section.
Mark the code in question as RCU read-side critical sections to avoid
any potential use-after-free issues.
Note that the temperature event handler looks like a place holder
currently but would still trigger an RCU lockdep splat.
Compile tested only.
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix gtk offload status event locking
The ath11k active pdevs are protected by RCU but the gtk offload status
event handling code calling ath11k_mac_get_arvif_by_vdev_id() was not
marked as a read-side critical section.
Mark the code in question as an RCU read-side critical section to avoid
any potential use-after-free issues.
Compile tested only.
In the Linux kernel, the following vulnerability has been resolved:
mptcp: deal with large GSO size
After the blamed commit below, the TCP sockets (and the MPTCP subflows)
can build egress packets larger than 64K. That exceeds the maximum DSS
data size, the length being misrepresent on the wire and the stream being
corrupted, as later observed on the receiver:
WARNING: CPU: 0 PID: 9696 at net/mptcp/protocol.c:705 __mptcp_move_skbs_from_subflow+0x2604/0x26e0
CPU: 0 PID: 9696 Comm: syz-executor.7 Not tainted 6.6.0-rc5-gcd8bdf563d46 #45
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.el7 04/01/2014
netlink: 8 bytes leftover after parsing attributes in process `syz-executor.4'.
RIP: 0010:__mptcp_move_skbs_from_subflow+0x2604/0x26e0 net/mptcp/protocol.c:705
RSP: 0018:ffffc90000006e80 EFLAGS: 00010246
RAX: ffffffff83e9f674 RBX: ffff88802f45d870 RCX: ffff888102ad0000
netlink: 8 bytes leftover after parsing attributes in process `syz-executor.4'.
RDX: 0000000080000303 RSI: 0000000000013908 RDI: 0000000000003908
RBP: ffffc90000007110 R08: ffffffff83e9e078 R09: 1ffff1100e548c8a
R10: dffffc0000000000 R11: ffffed100e548c8b R12: 0000000000013908
R13: dffffc0000000000 R14: 0000000000003908 R15: 000000000031cf29
FS: 00007f239c47e700(0000) GS:ffff88811b200000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f239c45cd78 CR3: 000000006a66c006 CR4: 0000000000770ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000600
PKRU: 55555554
Call Trace:
<IRQ>
mptcp_data_ready+0x263/0xac0 net/mptcp/protocol.c:819
subflow_data_ready+0x268/0x6d0 net/mptcp/subflow.c:1409
tcp_data_queue+0x21a1/0x7a60 net/ipv4/tcp_input.c:5151
tcp_rcv_established+0x950/0x1d90 net/ipv4/tcp_input.c:6098
tcp_v6_do_rcv+0x554/0x12f0 net/ipv6/tcp_ipv6.c:1483
tcp_v6_rcv+0x2e26/0x3810 net/ipv6/tcp_ipv6.c:1749
ip6_protocol_deliver_rcu+0xd6b/0x1ae0 net/ipv6/ip6_input.c:438
ip6_input+0x1c5/0x470 net/ipv6/ip6_input.c:483
ipv6_rcv+0xef/0x2c0 include/linux/netfilter.h:304
__netif_receive_skb+0x1ea/0x6a0 net/core/dev.c:5532
process_backlog+0x353/0x660 net/core/dev.c:5974
__napi_poll+0xc6/0x5a0 net/core/dev.c:6536
net_rx_action+0x6a0/0xfd0 net/core/dev.c:6603
__do_softirq+0x184/0x524 kernel/softirq.c:553
do_softirq+0xdd/0x130 kernel/softirq.c:454
Address the issue explicitly bounding the maximum GSO size to what MPTCP
actually allows.
In the Linux kernel, the following vulnerability has been resolved:
fs: Pass AT_GETATTR_NOSEC flag to getattr interface function
When vfs_getattr_nosec() calls a filesystem's getattr interface function
then the 'nosec' should propagate into this function so that
vfs_getattr_nosec() can again be called from the filesystem's gettattr
rather than vfs_getattr(). The latter would add unnecessary security
checks that the initial vfs_getattr_nosec() call wanted to avoid.
Therefore, introduce the getattr flag GETATTR_NOSEC and allow to pass
with the new getattr_flags parameter to the getattr interface function.
In overlayfs and ecryptfs use this flag to determine which one of the
two functions to call.
In a recent code change introduced to IMA vfs_getattr_nosec() ended up
calling vfs_getattr() in overlayfs, which in turn called
security_inode_getattr() on an exiting process that did not have
current->fs set anymore, which then caused a kernel NULL pointer
dereference. With this change the call to security_inode_getattr() can
be avoided, thus avoiding the NULL pointer dereference.
In the Linux kernel, the following vulnerability has been resolved:
net: mvneta: fix calls to page_pool_get_stats
Calling page_pool_get_stats in the mvneta driver without checks
leads to kernel crashes.
First the page pool is only available if the bm is not used.
The page pool is also not allocated when the port is stopped.
It can also be not allocated in case of errors.
The current implementation leads to the following crash calling
ethstats on a port that is down or when calling it at the wrong moment:
ble to handle kernel NULL pointer dereference at virtual address 00000070
[00000070] *pgd=00000000
Internal error: Oops: 5 [#1] SMP ARM
Hardware name: Marvell Armada 380/385 (Device Tree)
PC is at page_pool_get_stats+0x18/0x1cc
LR is at mvneta_ethtool_get_stats+0xa0/0xe0 [mvneta]
pc : [<c0b413cc>] lr : [<bf0a98d8>] psr: a0000013
sp : f1439d48 ip : f1439dc0 fp : 0000001d
r10: 00000100 r9 : c4816b80 r8 : f0d75150
r7 : bf0b400c r6 : c238f000 r5 : 00000000 r4 : f1439d68
r3 : c2091040 r2 : ffffffd8 r1 : f1439d68 r0 : 00000000
Flags: NzCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment none
Control: 10c5387d Table: 066b004a DAC: 00000051
Register r0 information: NULL pointer
Register r1 information: 2-page vmalloc region starting at 0xf1438000 allocated at kernel_clone+0x9c/0x390
Register r2 information: non-paged memory
Register r3 information: slab kmalloc-2k start c2091000 pointer offset 64 size 2048
Register r4 information: 2-page vmalloc region starting at 0xf1438000 allocated at kernel_clone+0x9c/0x390
Register r5 information: NULL pointer
Register r6 information: slab kmalloc-cg-4k start c238f000 pointer offset 0 size 4096
Register r7 information: 15-page vmalloc region starting at 0xbf0a8000 allocated at load_module+0xa30/0x219c
Register r8 information: 1-page vmalloc region starting at 0xf0d75000 allocated at ethtool_get_stats+0x138/0x208
Register r9 information: slab task_struct start c4816b80 pointer offset 0
Register r10 information: non-paged memory
Register r11 information: non-paged memory
Register r12 information: 2-page vmalloc region starting at 0xf1438000 allocated at kernel_clone+0x9c/0x390
Process snmpd (pid: 733, stack limit = 0x38de3a88)
Stack: (0xf1439d48 to 0xf143a000)
9d40: 000000c0 00000001 c238f000 bf0b400c f0d75150 c4816b80
9d60: 00000100 bf0a98d8 00000000 00000000 00000000 00000000 00000000 00000000
9d80: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
9da0: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
9dc0: 00000dc0 5335509c 00000035 c238f000 bf0b2214 01067f50 f0d75000 c0b9b9c8
9de0: 0000001d 00000035 c2212094 5335509c c4816b80 c238f000 c5ad6e00 01067f50
9e00: c1b0be80 c4816b80 00014813 c0b9d7f0 00000000 00000000 0000001d 0000001d
9e20: 00000000 00001200 00000000 00000000 c216ed90 c73943b8 00000000 00000000
9e40: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
9e60: 00000000 c0ad9034 00000000 00000000 00000000 00000000 00000000 00000000
9e80: 00000000 00000000 00000000 5335509c c1b0be80 f1439ee4 00008946 c1b0be80
9ea0: 01067f50 f1439ee3 00000000 00000046 b6d77ae0 c0b383f0 00008946 becc83e8
9ec0: c1b0be80 00000051 0000000b c68ca480 c7172d00 c0ad8ff0 f1439ee3 cf600e40
9ee0: 01600e40 32687465 00000000 00000000 00000000 01067f50 00000000 00000000
9f00: 00000000 5335509c 00008946 00008946 00000000 c68ca480 becc83e8 c05e2de0
9f20: f1439fb0 c03002f0 00000006 5ac3c35a c4816b80 00000006 b6d77ae0 c030caf0
9f40: c4817350 00000014 f1439e1c 0000000c 00000000 00000051 01000000 00000014
9f60: 00003fec f1439edc 00000001 c0372abc b6d77ae0 c0372abc cf600e40 5335509c
9f80: c21e6800 01015c9c 0000000b 00008946 00000036 c03002f0 c4816b80 00000036
9fa0: b6d77ae0 c03000c0 01015c9c 0000000b 0000000b 00008946 becc83e8 00000000
9fc0: 01015c9c 0000000b 00008946 00000036 00000035 010678a0 b6d797ec b6d77ae0
9fe0: b6dbf738 becc838c b6d186d7 b6baa858 40000030 0000000b 00000000 00000000
page_pool_get_s
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix slab out of bounds write in smb_inherit_dacl()
slab out-of-bounds write is caused by that offsets is bigger than pntsd
allocation size. This patch add the check to validate 3 offsets using
allocation size.
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential deadlock when releasing mids
All release_mid() callers seem to hold a reference of @mid so there is
no need to call kref_put(&mid->refcount, __release_mid) under
@server->mid_lock spinlock. If they don't, then an use-after-free bug
would have occurred anyways.
By getting rid of such spinlock also fixes a potential deadlock as
shown below
CPU 0 CPU 1
------------------------------------------------------------------
cifs_demultiplex_thread() cifs_debug_data_proc_show()
release_mid()
spin_lock(&server->mid_lock);
spin_lock(&cifs_tcp_ses_lock)
spin_lock(&server->mid_lock)
__release_mid()
smb2_find_smb_tcon()
spin_lock(&cifs_tcp_ses_lock) *deadlock*