Security Vulnerabilities
- CVEs Published In May 2024
In the Linux kernel, the following vulnerability has been resolved:
libbpf: Fix memory leak in strset
Free struct strset itself, not just its internal parts.
In the Linux kernel, the following vulnerability has been resolved:
net_sched: fix NULL deref in fifo_set_limit()
syzbot reported another NULL deref in fifo_set_limit() [1]
I could repro the issue with :
unshare -n
tc qd add dev lo root handle 1:0 tbf limit 200000 burst 70000 rate 100Mbit
tc qd replace dev lo parent 1:0 pfifo_fast
tc qd change dev lo root handle 1:0 tbf limit 300000 burst 70000 rate 100Mbit
pfifo_fast does not have a change() operation.
Make fifo_set_limit() more robust about this.
[1]
BUG: kernel NULL pointer dereference, address: 0000000000000000
PGD 1cf99067 P4D 1cf99067 PUD 7ca49067 PMD 0
Oops: 0010 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 14443 Comm: syz-executor959 Not tainted 5.15.0-rc3-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:0x0
Code: Unable to access opcode bytes at RIP 0xffffffffffffffd6.
RSP: 0018:ffffc9000e2f7310 EFLAGS: 00010246
RAX: dffffc0000000000 RBX: ffffffff8d6ecc00 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffff888024c27910 RDI: ffff888071e34000
RBP: ffff888071e34000 R08: 0000000000000001 R09: ffffffff8fcfb947
R10: 0000000000000001 R11: 0000000000000000 R12: ffff888024c27910
R13: ffff888071e34018 R14: 0000000000000000 R15: ffff88801ef74800
FS: 00007f321d897700(0000) GS:ffff8880b9d00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffffffffffffd6 CR3: 00000000722c3000 CR4: 00000000003506e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
fifo_set_limit net/sched/sch_fifo.c:242 [inline]
fifo_set_limit+0x198/0x210 net/sched/sch_fifo.c:227
tbf_change+0x6ec/0x16d0 net/sched/sch_tbf.c:418
qdisc_change net/sched/sch_api.c:1332 [inline]
tc_modify_qdisc+0xd9a/0x1a60 net/sched/sch_api.c:1634
rtnetlink_rcv_msg+0x413/0xb80 net/core/rtnetlink.c:5572
netlink_rcv_skb+0x153/0x420 net/netlink/af_netlink.c:2504
netlink_unicast_kernel net/netlink/af_netlink.c:1314 [inline]
netlink_unicast+0x533/0x7d0 net/netlink/af_netlink.c:1340
netlink_sendmsg+0x86d/0xdb0 net/netlink/af_netlink.c:1929
sock_sendmsg_nosec net/socket.c:704 [inline]
sock_sendmsg+0xcf/0x120 net/socket.c:724
____sys_sendmsg+0x6e8/0x810 net/socket.c:2409
___sys_sendmsg+0xf3/0x170 net/socket.c:2463
__sys_sendmsg+0xe5/0x1b0 net/socket.c:2492
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: fix a potential ttm->sg memory leak
Memory is allocated for ttm->sg by kmalloc in kfd_mem_dmamap_userptr,
but isn't freed by kfree in kfd_mem_dmaunmap_userptr. Free it!
In the Linux kernel, the following vulnerability has been resolved:
drm/nouveau/kms/nv50-: fix file release memory leak
When using single_open() for opening, single_release() should be
called, otherwise the 'op' allocated in single_open() will be leaked.
In the Linux kernel, the following vulnerability has been resolved:
drm/nouveau/debugfs: fix file release memory leak
When using single_open() for opening, single_release() should be
called, otherwise the 'op' allocated in single_open() will be leaked.
In the Linux kernel, the following vulnerability has been resolved:
HID: usbhid: free raw_report buffers in usbhid_stop
Free the unsent raw_report buffers when the device is removed.
Fixes a memory leak reported by syzbot at:
https://syzkaller.appspot.com/bug?id=7b4fa7cb1a7c2d3342a2a8a6c53371c8c418ab47
In the Linux kernel, the following vulnerability has been resolved:
ext4: add error checking to ext4_ext_replay_set_iblocks()
If the call to ext4_map_blocks() fails due to an corrupted file
system, ext4_ext_replay_set_iblocks() can get stuck in an infinite
loop. This could be reproduced by running generic/526 with a file
system that has inline_data and fast_commit enabled. The system will
repeatedly log to the console:
EXT4-fs warning (device dm-3): ext4_block_to_path:105: block 1074800922 > max in inode 131076
and the stack that it gets stuck in is:
ext4_block_to_path+0xe3/0x130
ext4_ind_map_blocks+0x93/0x690
ext4_map_blocks+0x100/0x660
skip_hole+0x47/0x70
ext4_ext_replay_set_iblocks+0x223/0x440
ext4_fc_replay_inode+0x29e/0x3b0
ext4_fc_replay+0x278/0x550
do_one_pass+0x646/0xc10
jbd2_journal_recover+0x14a/0x270
jbd2_journal_load+0xc4/0x150
ext4_load_journal+0x1f3/0x490
ext4_fill_super+0x22d4/0x2c00
With this patch, generic/526 still fails, but system is no longer
locking up in a tight loop. It's likely the root casue is that
fast_commit replay is corrupting file systems with inline_data, and we
probably need to add better error handling in the fast commit replay
code path beyond what is done here, which essentially just breaks the
infinite loop without reporting the to the higher levels of the code.
In the Linux kernel, the following vulnerability has been resolved:
KVM: x86: Handle SRCU initialization failure during page track init
Check the return of init_srcu_struct(), which can fail due to OOM, when
initializing the page track mechanism. Lack of checking leads to a NULL
pointer deref found by a modified syzkaller.
[Move the call towards the beginning of kvm_arch_init_vm. - Paolo]
In the Linux kernel, the following vulnerability has been resolved:
usb: dwc2: check return value after calling platform_get_resource()
It will cause null-ptr-deref if platform_get_resource() returns NULL,
we need check the return value.
In the Linux kernel, the following vulnerability has been resolved:
usb: chipidea: ci_hdrc_imx: Also search for 'phys' phandle
When passing 'phys' in the devicetree to describe the USB PHY phandle
(which is the recommended way according to
Documentation/devicetree/bindings/usb/ci-hdrc-usb2.txt) the
following NULL pointer dereference is observed on i.MX7 and i.MX8MM:
[ 1.489344] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000098
[ 1.498170] Mem abort info:
[ 1.500966] ESR = 0x96000044
[ 1.504030] EC = 0x25: DABT (current EL), IL = 32 bits
[ 1.509356] SET = 0, FnV = 0
[ 1.512416] EA = 0, S1PTW = 0
[ 1.515569] FSC = 0x04: level 0 translation fault
[ 1.520458] Data abort info:
[ 1.523349] ISV = 0, ISS = 0x00000044
[ 1.527196] CM = 0, WnR = 1
[ 1.530176] [0000000000000098] user address but active_mm is swapper
[ 1.536544] Internal error: Oops: 96000044 [#1] PREEMPT SMP
[ 1.542125] Modules linked in:
[ 1.545190] CPU: 3 PID: 7 Comm: kworker/u8:0 Not tainted 5.14.0-dirty #3
[ 1.551901] Hardware name: Kontron i.MX8MM N801X S (DT)
[ 1.557133] Workqueue: events_unbound deferred_probe_work_func
[ 1.562984] pstate: 80000005 (Nzcv daif -PAN -UAO -TCO BTYPE=--)
[ 1.568998] pc : imx7d_charger_detection+0x3f0/0x510
[ 1.573973] lr : imx7d_charger_detection+0x22c/0x510
This happens because the charger functions check for the phy presence
inside the imx_usbmisc_data structure (data->usb_phy), but the chipidea
core populates the usb_phy passed via 'phys' inside 'struct ci_hdrc'
(ci->usb_phy) instead.
This causes the NULL pointer dereference inside imx7d_charger_detection().
Fix it by also searching for 'phys' in case 'fsl,usbphy' is not found.
Tested on a imx7s-warp board.