Security Vulnerabilities
- CVEs Published In May 2024
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix corruption during on-line resize
We observed a corruption during on-line resize of a file system that is
larger than 16 TiB with 4k block size. With having more then 2^32 blocks
resize_inode is turned off by default by mke2fs. The issue can be
reproduced on a smaller file system for convenience by explicitly
turning off resize_inode. An on-line resize across an 8 GiB boundary (the
size of a meta block group in this setup) then leads to a corruption:
dev=/dev/<some_dev> # should be >= 16 GiB
mkdir -p /corruption
/sbin/mke2fs -t ext4 -b 4096 -O ^resize_inode $dev $((2 * 2**21 - 2**15))
mount -t ext4 $dev /corruption
dd if=/dev/zero bs=4096 of=/corruption/test count=$((2*2**21 - 4*2**15))
sha1sum /corruption/test
# 79d2658b39dcfd77274e435b0934028adafaab11 /corruption/test
/sbin/resize2fs $dev $((2*2**21))
# drop page cache to force reload the block from disk
echo 1 > /proc/sys/vm/drop_caches
sha1sum /corruption/test
# 3c2abc63cbf1a94c9e6977e0fbd72cd832c4d5c3 /corruption/test
2^21 = 2^15*2^6 equals 8 GiB whereof 2^15 is the number of blocks per
block group and 2^6 are the number of block groups that make a meta
block group.
The last checksum might be different depending on how the file is laid
out across the physical blocks. The actual corruption occurs at physical
block 63*2^15 = 2064384 which would be the location of the backup of the
meta block group's block descriptor. During the on-line resize the file
system will be converted to meta_bg starting at s_first_meta_bg which is
2 in the example - meaning all block groups after 16 GiB. However, in
ext4_flex_group_add we might add block groups that are not part of the
first meta block group yet. In the reproducer we achieved this by
substracting the size of a whole block group from the point where the
meta block group would start. This must be considered when updating the
backup block group descriptors to follow the non-meta_bg layout. The fix
is to add a test whether the group to add is already part of the meta
block group or not.
In the Linux kernel, the following vulnerability has been resolved:
md/dm-raid: don't call md_reap_sync_thread() directly
Currently md_reap_sync_thread() is called from raid_message() directly
without holding 'reconfig_mutex', this is definitely unsafe because
md_reap_sync_thread() can change many fields that is protected by
'reconfig_mutex'.
However, hold 'reconfig_mutex' here is still problematic because this
will cause deadlock, for example, commit 130443d60b1b ("md: refactor
idle/frozen_sync_thread() to fix deadlock").
Fix this problem by using stop_sync_thread() to unregister sync_thread,
like md/raid did.
In the Linux kernel, the following vulnerability has been resolved:
PCI/PM: Drain runtime-idle callbacks before driver removal
A race condition between the .runtime_idle() callback and the .remove()
callback in the rtsx_pcr PCI driver leads to a kernel crash due to an
unhandled page fault [1].
The problem is that rtsx_pci_runtime_idle() is not expected to be running
after pm_runtime_get_sync() has been called, but the latter doesn't really
guarantee that. It only guarantees that the suspend and resume callbacks
will not be running when it returns.
However, if a .runtime_idle() callback is already running when
pm_runtime_get_sync() is called, the latter will notice that the runtime PM
status of the device is RPM_ACTIVE and it will return right away without
waiting for the former to complete. In fact, it cannot wait for
.runtime_idle() to complete because it may be called from that callback (it
arguably does not make much sense to do that, but it is not strictly
prohibited).
Thus in general, whoever is providing a .runtime_idle() callback needs
to protect it from running in parallel with whatever code runs after
pm_runtime_get_sync(). [Note that .runtime_idle() will not start after
pm_runtime_get_sync() has returned, but it may continue running then if it
has started earlier.]
One way to address that race condition is to call pm_runtime_barrier()
after pm_runtime_get_sync() (not before it, because a nonzero value of the
runtime PM usage counter is necessary to prevent runtime PM callbacks from
being invoked) to wait for the .runtime_idle() callback to complete should
it be running at that point. A suitable place for doing that is in
pci_device_remove() which calls pm_runtime_get_sync() before removing the
driver, so it may as well call pm_runtime_barrier() subsequently, which
will prevent the race in question from occurring, not just in the rtsx_pcr
driver, but in any PCI drivers providing .runtime_idle() callbacks.
In the Linux kernel, the following vulnerability has been resolved:
drm/vmwgfx: Fix the lifetime of the bo cursor memory
The cleanup can be dispatched while the atomic update is still active,
which means that the memory acquired in the atomic update needs to
not be invalidated by the cleanup. The buffer objects in vmw_plane_state
instead of using the builtin map_and_cache were trying to handle
the lifetime of the mapped memory themselves, leading to crashes.
Use the map_and_cache instead of trying to manage the lifetime of the
buffer objects held by the vmw_plane_state.
Fixes kernel oops'es in IGT's kms_cursor_legacy forked-bo.
In the Linux kernel, the following vulnerability has been resolved:
x86/efistub: Call mixed mode boot services on the firmware's stack
Normally, the EFI stub calls into the EFI boot services using the stack
that was live when the stub was entered. According to the UEFI spec,
this stack needs to be at least 128k in size - this might seem large but
all asynchronous processing and event handling in EFI runs from the same
stack and so quite a lot of space may be used in practice.
In mixed mode, the situation is a bit different: the bootloader calls
the 32-bit EFI stub entry point, which calls the decompressor's 32-bit
entry point, where the boot stack is set up, using a fixed allocation
of 16k. This stack is still in use when the EFI stub is started in
64-bit mode, and so all calls back into the EFI firmware will be using
the decompressor's limited boot stack.
Due to the placement of the boot stack right after the boot heap, any
stack overruns have gone unnoticed. However, commit
5c4feadb0011983b ("x86/decompressor: Move global symbol references to C code")
moved the definition of the boot heap into C code, and now the boot
stack is placed right at the base of BSS, where any overruns will
corrupt the end of the .data section.
While it would be possible to work around this by increasing the size of
the boot stack, doing so would affect all x86 systems, and mixed mode
systems are a tiny (and shrinking) fraction of the x86 installed base.
So instead, record the firmware stack pointer value when entering from
the 32-bit firmware, and switch to this stack every time a EFI boot
service call is made.
In the Linux kernel, the following vulnerability has been resolved:
KVM: x86: Mark target gfn of emulated atomic instruction as dirty
When emulating an atomic access on behalf of the guest, mark the target
gfn dirty if the CMPXCHG by KVM is attempted and doesn't fault. This
fixes a bug where KVM effectively corrupts guest memory during live
migration by writing to guest memory without informing userspace that the
page is dirty.
Marking the page dirty got unintentionally dropped when KVM's emulated
CMPXCHG was converted to do a user access. Before that, KVM explicitly
mapped the guest page into kernel memory, and marked the page dirty during
the unmap phase.
Mark the page dirty even if the CMPXCHG fails, as the old data is written
back on failure, i.e. the page is still written. The value written is
guaranteed to be the same because the operation is atomic, but KVM's ABI
is that all writes are dirty logged regardless of the value written. And
more importantly, that's what KVM did before the buggy commit.
Huge kudos to the folks on the Cc list (and many others), who did all the
actual work of triaging and debugging.
base-commit: 6769ea8da8a93ed4630f1ce64df6aafcaabfce64
In the Linux kernel, the following vulnerability has been resolved:
dm snapshot: fix lockup in dm_exception_table_exit
There was reported lockup when we exit a snapshot with many exceptions.
Fix this by adding "cond_resched" to the loop that frees the exceptions.
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix race in read_extent_buffer_pages()
There are reports from tree-checker that detects corrupted nodes,
without any obvious pattern so possibly an overwrite in memory.
After some debugging it turns out there's a race when reading an extent
buffer the uptodate status can be missed.
To prevent concurrent reads for the same extent buffer,
read_extent_buffer_pages() performs these checks:
/* (1) */
if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
return 0;
/* (2) */
if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
goto done;
At this point, it seems safe to start the actual read operation. Once
that completes, end_bbio_meta_read() does
/* (3) */
set_extent_buffer_uptodate(eb);
/* (4) */
clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
Normally, this is enough to ensure only one read happens, and all other
callers wait for it to finish before returning. Unfortunately, there is
a racey interleaving:
Thread A | Thread B | Thread C
---------+----------+---------
(1) | |
| (1) |
(2) | |
(3) | |
(4) | |
| (2) |
| | (1)
When this happens, thread B kicks of an unnecessary read. Worse, thread
C will see UPTODATE set and return immediately, while the read from
thread B is still in progress. This race could result in tree-checker
errors like this as the extent buffer is concurrently modified:
BTRFS critical (device dm-0): corrupted node, root=256
block=8550954455682405139 owner mismatch, have 11858205567642294356
expect [256, 18446744073709551360]
Fix it by testing UPTODATE again after setting the READING bit, and if
it's been set, skip the unnecessary read.
[ minor update of changelog ]
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Prevent crash when disable stream
[Why]
Disabling stream encoder invokes a function that no longer exists.
[How]
Check if the function declaration is NULL in disable stream encoder.
In the Linux kernel, the following vulnerability has been resolved:
efi: fix panic in kdump kernel
Check if get_next_variable() is actually valid pointer before
calling it. In kdump kernel this method is set to NULL that causes
panic during the kexec-ed kernel boot.
Tested with QEMU and OVMF firmware.