Security Vulnerabilities
- CVEs Published In May 2024
In the Linux kernel, the following vulnerability has been resolved:
kprobes: Fix possible use-after-free issue on kprobe registration
When unloading a module, its state is changing MODULE_STATE_LIVE ->
MODULE_STATE_GOING -> MODULE_STATE_UNFORMED. Each change will take
a time. `is_module_text_address()` and `__module_text_address()`
works with MODULE_STATE_LIVE and MODULE_STATE_GOING.
If we use `is_module_text_address()` and `__module_text_address()`
separately, there is a chance that the first one is succeeded but the
next one is failed because module->state becomes MODULE_STATE_UNFORMED
between those operations.
In `check_kprobe_address_safe()`, if the second `__module_text_address()`
is failed, that is ignored because it expected a kernel_text address.
But it may have failed simply because module->state has been changed
to MODULE_STATE_UNFORMED. In this case, arm_kprobe() will try to modify
non-exist module text address (use-after-free).
To fix this problem, we should not use separated `is_module_text_address()`
and `__module_text_address()`, but use only `__module_text_address()`
once and do `try_module_get(module)` which is only available with
MODULE_STATE_LIVE.
In the Linux kernel, the following vulnerability has been resolved:
btrfs: qgroup: fix qgroup prealloc rsv leak in subvolume operations
Create subvolume, create snapshot and delete subvolume all use
btrfs_subvolume_reserve_metadata() to reserve metadata for the changes
done to the parent subvolume's fs tree, which cannot be mediated in the
normal way via start_transaction. When quota groups (squota or qgroups)
are enabled, this reserves qgroup metadata of type PREALLOC. Once the
operation is associated to a transaction, we convert PREALLOC to
PERTRANS, which gets cleared in bulk at the end of the transaction.
However, the error paths of these three operations were not implementing
this lifecycle correctly. They unconditionally converted the PREALLOC to
PERTRANS in a generic cleanup step regardless of errors or whether the
operation was fully associated to a transaction or not. This resulted in
error paths occasionally converting this rsv to PERTRANS without calling
record_root_in_trans successfully, which meant that unless that root got
recorded in the transaction by some other thread, the end of the
transaction would not free that root's PERTRANS, leaking it. Ultimately,
this resulted in hitting a WARN in CONFIG_BTRFS_DEBUG builds at unmount
for the leaked reservation.
The fix is to ensure that every qgroup PREALLOC reservation observes the
following properties:
1. any failure before record_root_in_trans is called successfully
results in freeing the PREALLOC reservation.
2. after record_root_in_trans, we convert to PERTRANS, and now the
transaction owns freeing the reservation.
This patch enforces those properties on the three operations. Without
it, generic/269 with squotas enabled at mkfs time would fail in ~5-10
runs on my system. With this patch, it ran successfully 1000 times in a
row.
In the Linux kernel, the following vulnerability has been resolved:
iommu/vt-d: Fix WARN_ON in iommu probe path
Commit 1a75cc710b95 ("iommu/vt-d: Use rbtree to track iommu probed
devices") adds all devices probed by the iommu driver in a rbtree
indexed by the source ID of each device. It assumes that each device
has a unique source ID. This assumption is incorrect and the VT-d
spec doesn't state this requirement either.
The reason for using a rbtree to track devices is to look up the device
with PCI bus and devfunc in the paths of handling ATS invalidation time
out error and the PRI I/O page faults. Both are PCI ATS feature related.
Only track the devices that have PCI ATS capabilities in the rbtree to
avoid unnecessary WARN_ON in the iommu probe path. Otherwise, on some
platforms below kernel splat will be displayed and the iommu probe results
in failure.
WARNING: CPU: 3 PID: 166 at drivers/iommu/intel/iommu.c:158 intel_iommu_probe_device+0x319/0xd90
Call Trace:
<TASK>
? __warn+0x7e/0x180
? intel_iommu_probe_device+0x319/0xd90
? report_bug+0x1f8/0x200
? handle_bug+0x3c/0x70
? exc_invalid_op+0x18/0x70
? asm_exc_invalid_op+0x1a/0x20
? intel_iommu_probe_device+0x319/0xd90
? debug_mutex_init+0x37/0x50
__iommu_probe_device+0xf2/0x4f0
iommu_probe_device+0x22/0x70
iommu_bus_notifier+0x1e/0x40
notifier_call_chain+0x46/0x150
blocking_notifier_call_chain+0x42/0x60
bus_notify+0x2f/0x50
device_add+0x5ed/0x7e0
platform_device_add+0xf5/0x240
mfd_add_devices+0x3f9/0x500
? preempt_count_add+0x4c/0xa0
? up_write+0xa2/0x1b0
? __debugfs_create_file+0xe3/0x150
intel_lpss_probe+0x49f/0x5b0
? pci_conf1_write+0xa3/0xf0
intel_lpss_pci_probe+0xcf/0x110 [intel_lpss_pci]
pci_device_probe+0x95/0x120
really_probe+0xd9/0x370
? __pfx___driver_attach+0x10/0x10
__driver_probe_device+0x73/0x150
driver_probe_device+0x19/0xa0
__driver_attach+0xb6/0x180
? __pfx___driver_attach+0x10/0x10
bus_for_each_dev+0x77/0xd0
bus_add_driver+0x114/0x210
driver_register+0x5b/0x110
? __pfx_intel_lpss_pci_driver_init+0x10/0x10 [intel_lpss_pci]
do_one_initcall+0x57/0x2b0
? kmalloc_trace+0x21e/0x280
? do_init_module+0x1e/0x210
do_init_module+0x5f/0x210
load_module+0x1d37/0x1fc0
? init_module_from_file+0x86/0xd0
init_module_from_file+0x86/0xd0
idempotent_init_module+0x17c/0x230
__x64_sys_finit_module+0x56/0xb0
do_syscall_64+0x6e/0x140
entry_SYSCALL_64_after_hwframe+0x71/0x79
In the Linux kernel, the following vulnerability has been resolved:
bcachefs: Check for journal entries overruning end of sb clean section
Fix a missing bounds check in superblock validation.
Note that we don't yet have repair code for this case - repair code for
individual items is generally low priority, since the whole superblock
is checksummed, validated prior to write, and we have backups.
A vulnerability classified as problematic has been found in PHPGurukul Directory Management System 1.0. Affected is an unknown function of the file /admin/search-directory.php.. The manipulation leads to cross site scripting. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used. The identifier of this vulnerability is VDB-265212.
In lunary-ai/lunary version 1.2.2, the DELETE endpoint located at `packages/backend/src/api/v1/datasets` is vulnerable to unauthorized dataset deletion due to missing authorization and authentication mechanisms. This vulnerability allows any user, even those without a valid token, to delete a dataset by sending a DELETE request to the endpoint. The issue was fixed in version 1.2.8. The impact of this vulnerability is significant as it permits unauthorized users to delete datasets, potentially leading to data loss or disruption of service.
A vulnerability was found in PHPGurukul Directory Management System 1.0. It has been rated as critical. This issue affects some unknown processing of the file /admin/index.php. The manipulation of the argument username leads to sql injection. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used. The associated identifier of this vulnerability is VDB-265211.
A vulnerability classified as problematic has been found in SourceCodester Event Registration System 1.0. This affects an unknown part of the file /registrar/. The manipulation of the argument searchbar leads to cross site scripting. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used. The associated identifier of this vulnerability is VDB-265203.
A vulnerability was found in SourceCodester Electricity Consumption Monitoring Tool 1.0. It has been declared as critical. This vulnerability affects unknown code of the file /endpoint/delete-bill.php. The manipulation of the argument bill leads to sql injection. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used. VDB-265210 is the identifier assigned to this vulnerability.
In scrapy/scrapy, an issue was identified where the Authorization header is not removed during redirects that only change the scheme (e.g., HTTPS to HTTP) but remain within the same domain. This behavior contravenes the Fetch standard, which mandates the removal of Authorization headers in cross-origin requests when the scheme, host, or port changes. Consequently, when a redirect downgrades from HTTPS to HTTP, the Authorization header may be inadvertently exposed in plaintext, leading to potential sensitive information disclosure to unauthorized actors. The flaw is located in the _build_redirect_request function of the redirect middleware.