Security Vulnerabilities
- CVEs Published In May 2024
In the Linux kernel, the following vulnerability has been resolved:
irqchip/gic-v3-its: Fix potential VPE leak on error
In its_vpe_irq_domain_alloc, when its_vpe_init() returns an error,
there is an off-by-one in the number of VPEs to be freed.
Fix it by simply passing the number of VPEs allocated, which is the
index of the loop iterating over the VPEs.
[maz: fixed commit message]
In the Linux kernel, the following vulnerability has been resolved:
dma-debug: prevent an error message from causing runtime problems
For some drivers, that use the DMA API. This error message can be reached
several millions of times per second, causing spam to the kernel's printk
buffer and bringing the CPU usage up to 100% (so, it should be rate
limited). However, since there is at least one driver that is in the
mainline and suffers from the error condition, it is more useful to
err_printk() here instead of just rate limiting the error message (in hopes
that it will make it easier for other drivers that suffer from this issue
to be spotted).
In the Linux kernel, the following vulnerability has been resolved:
blktrace: Fix uaf in blk_trace access after removing by sysfs
There is an use-after-free problem triggered by following process:
P1(sda) P2(sdb)
echo 0 > /sys/block/sdb/trace/enable
blk_trace_remove_queue
synchronize_rcu
blk_trace_free
relay_close
rcu_read_lock
__blk_add_trace
trace_note_tsk
(Iterate running_trace_list)
relay_close_buf
relay_destroy_buf
kfree(buf)
trace_note(sdb's bt)
relay_reserve
buf->offset <- nullptr deference (use-after-free) !!!
rcu_read_unlock
[ 502.714379] BUG: kernel NULL pointer dereference, address:
0000000000000010
[ 502.715260] #PF: supervisor read access in kernel mode
[ 502.715903] #PF: error_code(0x0000) - not-present page
[ 502.716546] PGD 103984067 P4D 103984067 PUD 17592b067 PMD 0
[ 502.717252] Oops: 0000 [#1] SMP
[ 502.720308] RIP: 0010:trace_note.isra.0+0x86/0x360
[ 502.732872] Call Trace:
[ 502.733193] __blk_add_trace.cold+0x137/0x1a3
[ 502.733734] blk_add_trace_rq+0x7b/0xd0
[ 502.734207] blk_add_trace_rq_issue+0x54/0xa0
[ 502.734755] blk_mq_start_request+0xde/0x1b0
[ 502.735287] scsi_queue_rq+0x528/0x1140
...
[ 502.742704] sg_new_write.isra.0+0x16e/0x3e0
[ 502.747501] sg_ioctl+0x466/0x1100
Reproduce method:
ioctl(/dev/sda, BLKTRACESETUP, blk_user_trace_setup[buf_size=127])
ioctl(/dev/sda, BLKTRACESTART)
ioctl(/dev/sdb, BLKTRACESETUP, blk_user_trace_setup[buf_size=127])
ioctl(/dev/sdb, BLKTRACESTART)
echo 0 > /sys/block/sdb/trace/enable &
// Add delay(mdelay/msleep) before kernel enters blk_trace_free()
ioctl$SG_IO(/dev/sda, SG_IO, ...)
// Enters trace_note_tsk() after blk_trace_free() returned
// Use mdelay in rcu region rather than msleep(which may schedule out)
Remove blk_trace from running_list before calling blk_trace_free() by
sysfs if blk_trace is at Blktrace_running state.
In the Linux kernel, the following vulnerability has been resolved:
bpf: Add oversize check before call kvcalloc()
Commit 7661809d493b ("mm: don't allow oversized kvmalloc() calls") add the
oversize check. When the allocation is larger than what kmalloc() supports,
the following warning triggered:
WARNING: CPU: 0 PID: 8408 at mm/util.c:597 kvmalloc_node+0x108/0x110 mm/util.c:597
Modules linked in:
CPU: 0 PID: 8408 Comm: syz-executor221 Not tainted 5.14.0-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:kvmalloc_node+0x108/0x110 mm/util.c:597
Call Trace:
kvmalloc include/linux/mm.h:806 [inline]
kvmalloc_array include/linux/mm.h:824 [inline]
kvcalloc include/linux/mm.h:829 [inline]
check_btf_line kernel/bpf/verifier.c:9925 [inline]
check_btf_info kernel/bpf/verifier.c:10049 [inline]
bpf_check+0xd634/0x150d0 kernel/bpf/verifier.c:13759
bpf_prog_load kernel/bpf/syscall.c:2301 [inline]
__sys_bpf+0x11181/0x126e0 kernel/bpf/syscall.c:4587
__do_sys_bpf kernel/bpf/syscall.c:4691 [inline]
__se_sys_bpf kernel/bpf/syscall.c:4689 [inline]
__x64_sys_bpf+0x78/0x90 kernel/bpf/syscall.c:4689
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
In the Linux kernel, the following vulnerability has been resolved:
nvme-rdma: destroy cm id before destroy qp to avoid use after free
We should always destroy cm_id before destroy qp to avoid to get cma
event after qp was destroyed, which may lead to use after free.
In RDMA connection establishment error flow, don't destroy qp in cm
event handler.Just report cm_error to upper level, qp will be destroy
in nvme_rdma_alloc_queue() after destroy cm id.
In the Linux kernel, the following vulnerability has been resolved:
blk-cgroup: fix UAF by grabbing blkcg lock before destroying blkg pd
KASAN reports a use-after-free report when doing fuzz test:
[693354.104835] ==================================================================
[693354.105094] BUG: KASAN: use-after-free in bfq_io_set_weight_legacy+0xd3/0x160
[693354.105336] Read of size 4 at addr ffff888be0a35664 by task sh/1453338
[693354.105607] CPU: 41 PID: 1453338 Comm: sh Kdump: loaded Not tainted 4.18.0-147
[693354.105610] Hardware name: Huawei 2288H V5/BC11SPSCB0, BIOS 0.81 07/02/2018
[693354.105612] Call Trace:
[693354.105621] dump_stack+0xf1/0x19b
[693354.105626] ? show_regs_print_info+0x5/0x5
[693354.105634] ? printk+0x9c/0xc3
[693354.105638] ? cpumask_weight+0x1f/0x1f
[693354.105648] print_address_description+0x70/0x360
[693354.105654] kasan_report+0x1b2/0x330
[693354.105659] ? bfq_io_set_weight_legacy+0xd3/0x160
[693354.105665] ? bfq_io_set_weight_legacy+0xd3/0x160
[693354.105670] bfq_io_set_weight_legacy+0xd3/0x160
[693354.105675] ? bfq_cpd_init+0x20/0x20
[693354.105683] cgroup_file_write+0x3aa/0x510
[693354.105693] ? ___slab_alloc+0x507/0x540
[693354.105698] ? cgroup_file_poll+0x60/0x60
[693354.105702] ? 0xffffffff89600000
[693354.105708] ? usercopy_abort+0x90/0x90
[693354.105716] ? mutex_lock+0xef/0x180
[693354.105726] kernfs_fop_write+0x1ab/0x280
[693354.105732] ? cgroup_file_poll+0x60/0x60
[693354.105738] vfs_write+0xe7/0x230
[693354.105744] ksys_write+0xb0/0x140
[693354.105749] ? __ia32_sys_read+0x50/0x50
[693354.105760] do_syscall_64+0x112/0x370
[693354.105766] ? syscall_return_slowpath+0x260/0x260
[693354.105772] ? do_page_fault+0x9b/0x270
[693354.105779] ? prepare_exit_to_usermode+0xf9/0x1a0
[693354.105784] ? enter_from_user_mode+0x30/0x30
[693354.105793] entry_SYSCALL_64_after_hwframe+0x65/0xca
[693354.105875] Allocated by task 1453337:
[693354.106001] kasan_kmalloc+0xa0/0xd0
[693354.106006] kmem_cache_alloc_node_trace+0x108/0x220
[693354.106010] bfq_pd_alloc+0x96/0x120
[693354.106015] blkcg_activate_policy+0x1b7/0x2b0
[693354.106020] bfq_create_group_hierarchy+0x1e/0x80
[693354.106026] bfq_init_queue+0x678/0x8c0
[693354.106031] blk_mq_init_sched+0x1f8/0x460
[693354.106037] elevator_switch_mq+0xe1/0x240
[693354.106041] elevator_switch+0x25/0x40
[693354.106045] elv_iosched_store+0x1a1/0x230
[693354.106049] queue_attr_store+0x78/0xb0
[693354.106053] kernfs_fop_write+0x1ab/0x280
[693354.106056] vfs_write+0xe7/0x230
[693354.106060] ksys_write+0xb0/0x140
[693354.106064] do_syscall_64+0x112/0x370
[693354.106069] entry_SYSCALL_64_after_hwframe+0x65/0xca
[693354.106114] Freed by task 1453336:
[693354.106225] __kasan_slab_free+0x130/0x180
[693354.106229] kfree+0x90/0x1b0
[693354.106233] blkcg_deactivate_policy+0x12c/0x220
[693354.106238] bfq_exit_queue+0xf5/0x110
[693354.106241] blk_mq_exit_sched+0x104/0x130
[693354.106245] __elevator_exit+0x45/0x60
[693354.106249] elevator_switch_mq+0xd6/0x240
[693354.106253] elevator_switch+0x25/0x40
[693354.106257] elv_iosched_store+0x1a1/0x230
[693354.106261] queue_attr_store+0x78/0xb0
[693354.106264] kernfs_fop_write+0x1ab/0x280
[693354.106268] vfs_write+0xe7/0x230
[693354.106271] ksys_write+0xb0/0x140
[693354.106275] do_syscall_64+0x112/0x370
[693354.106280] entry_SYSCALL_64_after_hwframe+0x65/0xca
[693354.106329] The buggy address belongs to the object at ffff888be0a35580
which belongs to the cache kmalloc-1k of size 1024
[693354.106736] The buggy address is located 228 bytes inside of
1024-byte region [ffff888be0a35580, ffff888be0a35980)
[693354.107114] The buggy address belongs to the page:
[693354.107273] page:ffffea002f828c00 count:1 mapcount:0 mapping:ffff888107c17080 index:0x0 compound_mapcount: 0
[693354.107606] flags: 0x17ffffc0008100(slab|head)
[693354.107760] raw: 0017ffffc0008100 ffffea002fcbc808 ffffea0030bd3a08 ffff888107c17080
[693354.108020] r
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
HID: amd_sfh: Fix potential NULL pointer dereference
devm_add_action_or_reset() can suddenly invoke amd_mp2_pci_remove() at
registration that will cause NULL pointer dereference since
corresponding data is not initialized yet. The patch moves
initialization of data before devm_add_action_or_reset().
Found by Linux Driver Verification project (linuxtesting.org).
[jkosina@suse.cz: rebase]
In the Linux kernel, the following vulnerability has been resolved:
ASoC: SOF: Fix DSP oops stack dump output contents
Fix @buf arg given to hex_dump_to_buffer() and stack address used
in dump error output.
In the Linux kernel, the following vulnerability has been resolved:
s390/qeth: fix deadlock during failing recovery
Commit 0b9902c1fcc5 ("s390/qeth: fix deadlock during recovery") removed
taking discipline_mutex inside qeth_do_reset(), fixing potential
deadlocks. An error path was missed though, that still takes
discipline_mutex and thus has the original deadlock potential.
Intermittent deadlocks were seen when a qeth channel path is configured
offline, causing a race between qeth_do_reset and ccwgroup_remove.
Call qeth_set_offline() directly in the qeth_do_reset() error case and
then a new variant of ccwgroup_set_offline(), without taking
discipline_mutex.
In the Linux kernel, the following vulnerability has been resolved:
tty: Fix out-of-bound vmalloc access in imageblit
This issue happens when a userspace program does an ioctl
FBIOPUT_VSCREENINFO passing the fb_var_screeninfo struct
containing only the fields xres, yres, and bits_per_pixel
with values.
If this struct is the same as the previous ioctl, the
vc_resize() detects it and doesn't call the resize_screen(),
leaving the fb_var_screeninfo incomplete. And this leads to
the updatescrollmode() calculates a wrong value to
fbcon_display->vrows, which makes the real_y() return a
wrong value of y, and that value, eventually, causes
the imageblit to access an out-of-bound address value.
To solve this issue I made the resize_screen() be called
even if the screen does not need any resizing, so it will
"fix and fill" the fb_var_screeninfo independently.