Security Vulnerabilities
- CVEs Published In May 2024
In the Linux kernel, the following vulnerability has been resolved:
i2c: smbus: fix NULL function pointer dereference
Baruch reported an OOPS when using the designware controller as target
only. Target-only modes break the assumption of one transfer function
always being available. Fix this by always checking the pointer in
__i2c_transfer.
[wsa: dropped the simplification in core-smbus to avoid theoretical regressions]
In the Linux kernel, the following vulnerability has been resolved:
sched/eevdf: Prevent vlag from going out of bounds in reweight_eevdf()
It was possible to have pick_eevdf() return NULL, which then causes a
NULL-deref. This turned out to be due to entity_eligible() returning
falsely negative because of a s64 multiplcation overflow.
Specifically, reweight_eevdf() computes the vlag without considering
the limit placed upon vlag as update_entity_lag() does, and then the
scaling multiplication (remember that weight is 20bit fixed point) can
overflow. This then leads to the new vruntime being weird which then
causes the above entity_eligible() to go side-ways and claim nothing
is eligible.
Thus limit the range of vlag accordingly.
All this was quite rare, but fatal when it does happen.
In the Linux kernel, the following vulnerability has been resolved:
phy: ti: tusb1210: Resolve charger-det crash if charger psy is unregistered
The power_supply frame-work is not really designed for there to be
long living in kernel references to power_supply devices.
Specifically unregistering a power_supply while some other code has
a reference to it triggers a WARN in power_supply_unregister():
WARN_ON(atomic_dec_return(&psy->use_cnt));
Folllowed by the power_supply still getting removed and the
backing data freed anyway, leaving the tusb1210 charger-detect code
with a dangling reference, resulting in a crash the next time
tusb1210_get_online() is called.
Fix this by only holding the reference in tusb1210_get_online()
freeing it at the end of the function. Note this still leaves
a theoretical race window, but it avoids the issue when manually
rmmod-ing the charger chip driver during development.
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Properly link new fs rules into the tree
Previously, add_rule_fg would only add newly created rules from the
handle into the tree when they had a refcount of 1. On the other hand,
create_flow_handle tries hard to find and reference already existing
identical rules instead of creating new ones.
These two behaviors can result in a situation where create_flow_handle
1) creates a new rule and references it, then
2) in a subsequent step during the same handle creation references it
again,
resulting in a rule with a refcount of 2 that is not linked into the
tree, will have a NULL parent and root and will result in a crash when
the flow group is deleted because del_sw_hw_rule, invoked on rule
deletion, assumes node->parent is != NULL.
This happened in the wild, due to another bug related to incorrect
handling of duplicate pkt_reformat ids, which lead to the code in
create_flow_handle incorrectly referencing a just-added rule in the same
flow handle, resulting in the problem described above. Full details are
at [1].
This patch changes add_rule_fg to add new rules without parents into
the tree, properly initializing them and avoiding the crash. This makes
it more consistent with how rules are added to an FTE in
create_flow_handle.
In the Linux kernel, the following vulnerability has been resolved:
pds_core: Fix pdsc_check_pci_health function to use work thread
When the driver notices fw_status == 0xff it tries to perform a PCI
reset on itself via pci_reset_function() in the context of the driver's
health thread. However, pdsc_reset_prepare calls
pdsc_stop_health_thread(), which attempts to stop/flush the health
thread. This results in a deadlock because the stop/flush will never
complete since the driver called pci_reset_function() from the health
thread context. Fix by changing the pdsc_check_pci_health_function()
to queue a newly introduced pdsc_pci_reset_thread() on the pdsc's
work queue.
Unloading the driver in the fw_down/dead state uncovered another issue,
which can be seen in the following trace:
WARNING: CPU: 51 PID: 6914 at kernel/workqueue.c:1450 __queue_work+0x358/0x440
[...]
RIP: 0010:__queue_work+0x358/0x440
[...]
Call Trace:
<TASK>
? __warn+0x85/0x140
? __queue_work+0x358/0x440
? report_bug+0xfc/0x1e0
? handle_bug+0x3f/0x70
? exc_invalid_op+0x17/0x70
? asm_exc_invalid_op+0x1a/0x20
? __queue_work+0x358/0x440
queue_work_on+0x28/0x30
pdsc_devcmd_locked+0x96/0xe0 [pds_core]
pdsc_devcmd_reset+0x71/0xb0 [pds_core]
pdsc_teardown+0x51/0xe0 [pds_core]
pdsc_remove+0x106/0x200 [pds_core]
pci_device_remove+0x37/0xc0
device_release_driver_internal+0xae/0x140
driver_detach+0x48/0x90
bus_remove_driver+0x6d/0xf0
pci_unregister_driver+0x2e/0xa0
pdsc_cleanup_module+0x10/0x780 [pds_core]
__x64_sys_delete_module+0x142/0x2b0
? syscall_trace_enter.isra.18+0x126/0x1a0
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x72/0xdc
RIP: 0033:0x7fbd9d03a14b
[...]
Fix this by preventing the devcmd reset if the FW is not running.
In the Linux kernel, the following vulnerability has been resolved:
ipv6: fix race condition between ipv6_get_ifaddr and ipv6_del_addr
Although ipv6_get_ifaddr walks inet6_addr_lst under the RCU lock, it
still means hlist_for_each_entry_rcu can return an item that got removed
from the list. The memory itself of such item is not freed thanks to RCU
but nothing guarantees the actual content of the memory is sane.
In particular, the reference count can be zero. This can happen if
ipv6_del_addr is called in parallel. ipv6_del_addr removes the entry
from inet6_addr_lst (hlist_del_init_rcu(&ifp->addr_lst)) and drops all
references (__in6_ifa_put(ifp) + in6_ifa_put(ifp)). With bad enough
timing, this can happen:
1. In ipv6_get_ifaddr, hlist_for_each_entry_rcu returns an entry.
2. Then, the whole ipv6_del_addr is executed for the given entry. The
reference count drops to zero and kfree_rcu is scheduled.
3. ipv6_get_ifaddr continues and tries to increments the reference count
(in6_ifa_hold).
4. The rcu is unlocked and the entry is freed.
5. The freed entry is returned.
Prevent increasing of the reference count in such case. The name
in6_ifa_hold_safe is chosen to mimic the existing fib6_info_hold_safe.
[ 41.506330] refcount_t: addition on 0; use-after-free.
[ 41.506760] WARNING: CPU: 0 PID: 595 at lib/refcount.c:25 refcount_warn_saturate+0xa5/0x130
[ 41.507413] Modules linked in: veth bridge stp llc
[ 41.507821] CPU: 0 PID: 595 Comm: python3 Not tainted 6.9.0-rc2.main-00208-g49563be82afa #14
[ 41.508479] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
[ 41.509163] RIP: 0010:refcount_warn_saturate+0xa5/0x130
[ 41.509586] Code: ad ff 90 0f 0b 90 90 c3 cc cc cc cc 80 3d c0 30 ad 01 00 75 a0 c6 05 b7 30 ad 01 01 90 48 c7 c7 38 cc 7a 8c e8 cc 18 ad ff 90 <0f> 0b 90 90 c3 cc cc cc cc 80 3d 98 30 ad 01 00 0f 85 75 ff ff ff
[ 41.510956] RSP: 0018:ffffbda3c026baf0 EFLAGS: 00010282
[ 41.511368] RAX: 0000000000000000 RBX: ffff9e9c46914800 RCX: 0000000000000000
[ 41.511910] RDX: ffff9e9c7ec29c00 RSI: ffff9e9c7ec1c900 RDI: ffff9e9c7ec1c900
[ 41.512445] RBP: ffff9e9c43660c9c R08: 0000000000009ffb R09: 00000000ffffdfff
[ 41.512998] R10: 00000000ffffdfff R11: ffffffff8ca58a40 R12: ffff9e9c4339a000
[ 41.513534] R13: 0000000000000001 R14: ffff9e9c438a0000 R15: ffffbda3c026bb48
[ 41.514086] FS: 00007fbc4cda1740(0000) GS:ffff9e9c7ec00000(0000) knlGS:0000000000000000
[ 41.514726] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 41.515176] CR2: 000056233b337d88 CR3: 000000000376e006 CR4: 0000000000370ef0
[ 41.515713] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 41.516252] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 41.516799] Call Trace:
[ 41.517037] <TASK>
[ 41.517249] ? __warn+0x7b/0x120
[ 41.517535] ? refcount_warn_saturate+0xa5/0x130
[ 41.517923] ? report_bug+0x164/0x190
[ 41.518240] ? handle_bug+0x3d/0x70
[ 41.518541] ? exc_invalid_op+0x17/0x70
[ 41.520972] ? asm_exc_invalid_op+0x1a/0x20
[ 41.521325] ? refcount_warn_saturate+0xa5/0x130
[ 41.521708] ipv6_get_ifaddr+0xda/0xe0
[ 41.522035] inet6_rtm_getaddr+0x342/0x3f0
[ 41.522376] ? __pfx_inet6_rtm_getaddr+0x10/0x10
[ 41.522758] rtnetlink_rcv_msg+0x334/0x3d0
[ 41.523102] ? netlink_unicast+0x30f/0x390
[ 41.523445] ? __pfx_rtnetlink_rcv_msg+0x10/0x10
[ 41.523832] netlink_rcv_skb+0x53/0x100
[ 41.524157] netlink_unicast+0x23b/0x390
[ 41.524484] netlink_sendmsg+0x1f2/0x440
[ 41.524826] __sys_sendto+0x1d8/0x1f0
[ 41.525145] __x64_sys_sendto+0x1f/0x30
[ 41.525467] do_syscall_64+0xa5/0x1b0
[ 41.525794] entry_SYSCALL_64_after_hwframe+0x72/0x7a
[ 41.526213] RIP: 0033:0x7fbc4cfcea9a
[ 41.526528] Code: d8 64 89 02 48 c7 c0 ff ff ff ff eb b8 0f 1f 00 f3 0f 1e fa 41 89 ca 64 8b 04 25 18 00 00 00 85 c0 75 15 b8 2c 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 7e c3 0f 1f 44 00 00 41 54 48 83 ec 30 44 89
[ 41.527942] RSP: 002b:00007f
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
af_unix: Clear stale u->oob_skb.
syzkaller started to report deadlock of unix_gc_lock after commit
4090fa373f0e ("af_unix: Replace garbage collection algorithm."), but
it just uncovers the bug that has been there since commit 314001f0bf92
("af_unix: Add OOB support").
The repro basically does the following.
from socket import *
from array import array
c1, c2 = socketpair(AF_UNIX, SOCK_STREAM)
c1.sendmsg([b'a'], [(SOL_SOCKET, SCM_RIGHTS, array("i", [c2.fileno()]))], MSG_OOB)
c2.recv(1) # blocked as no normal data in recv queue
c2.close() # done async and unblock recv()
c1.close() # done async and trigger GC
A socket sends its file descriptor to itself as OOB data and tries to
receive normal data, but finally recv() fails due to async close().
The problem here is wrong handling of OOB skb in manage_oob(). When
recvmsg() is called without MSG_OOB, manage_oob() is called to check
if the peeked skb is OOB skb. In such a case, manage_oob() pops it
out of the receive queue but does not clear unix_sock(sk)->oob_skb.
This is wrong in terms of uAPI.
Let's say we send "hello" with MSG_OOB, and "world" without MSG_OOB.
The 'o' is handled as OOB data. When recv() is called twice without
MSG_OOB, the OOB data should be lost.
>>> from socket import *
>>> c1, c2 = socketpair(AF_UNIX, SOCK_STREAM, 0)
>>> c1.send(b'hello', MSG_OOB) # 'o' is OOB data
5
>>> c1.send(b'world')
5
>>> c2.recv(5) # OOB data is not received
b'hell'
>>> c2.recv(5) # OOB date is skipped
b'world'
>>> c2.recv(5, MSG_OOB) # This should return an error
b'o'
In the same situation, TCP actually returns -EINVAL for the last
recv().
Also, if we do not clear unix_sk(sk)->oob_skb, unix_poll() always set
EPOLLPRI even though the data has passed through by previous recv().
To avoid these issues, we must clear unix_sk(sk)->oob_skb when dequeuing
it from recv queue.
The reason why the old GC did not trigger the deadlock is because the
old GC relied on the receive queue to detect the loop.
When it is triggered, the socket with OOB data is marked as GC candidate
because file refcount == inflight count (1). However, after traversing
all inflight sockets, the socket still has a positive inflight count (1),
thus the socket is excluded from candidates. Then, the old GC lose the
chance to garbage-collect the socket.
With the old GC, the repro continues to create true garbage that will
never be freed nor detected by kmemleak as it's linked to the global
inflight list. That's why we couldn't even notice the issue.
In the Linux kernel, the following vulnerability has been resolved:
accel/ivpu: Fix deadlock in context_xa
ivpu_device->context_xa is locked both in kernel thread and IRQ context.
It requires XA_FLAGS_LOCK_IRQ flag to be passed during initialization
otherwise the lock could be acquired from a thread and interrupted by
an IRQ that locks it for the second time causing the deadlock.
This deadlock was reported by lockdep and observed in internal tests.
In the Linux kernel, the following vulnerability has been resolved:
scsi: sg: Avoid sg device teardown race
sg_remove_sfp_usercontext() must not use sg_device_destroy() after calling
scsi_device_put().
sg_device_destroy() is accessing the parent scsi_device request_queue which
will already be set to NULL when the preceding call to scsi_device_put()
removed the last reference to the parent scsi_device.
The resulting NULL pointer exception will then crash the kernel.
In the Linux kernel, the following vulnerability has been resolved:
kprobes: Fix possible use-after-free issue on kprobe registration
When unloading a module, its state is changing MODULE_STATE_LIVE ->
MODULE_STATE_GOING -> MODULE_STATE_UNFORMED. Each change will take
a time. `is_module_text_address()` and `__module_text_address()`
works with MODULE_STATE_LIVE and MODULE_STATE_GOING.
If we use `is_module_text_address()` and `__module_text_address()`
separately, there is a chance that the first one is succeeded but the
next one is failed because module->state becomes MODULE_STATE_UNFORMED
between those operations.
In `check_kprobe_address_safe()`, if the second `__module_text_address()`
is failed, that is ignored because it expected a kernel_text address.
But it may have failed simply because module->state has been changed
to MODULE_STATE_UNFORMED. In this case, arm_kprobe() will try to modify
non-exist module text address (use-after-free).
To fix this problem, we should not use separated `is_module_text_address()`
and `__module_text_address()`, but use only `__module_text_address()`
once and do `try_module_get(module)` which is only available with
MODULE_STATE_LIVE.