Security Vulnerabilities
- CVEs Published In April 2025
In the Linux kernel, the following vulnerability has been resolved:
ASoC: imx-card: Add NULL check in imx_card_probe()
devm_kasprintf() returns NULL when memory allocation fails. Currently,
imx_card_probe() does not check for this case, which results in a NULL
pointer dereference.
Add NULL check after devm_kasprintf() to prevent this issue.
In the Linux kernel, the following vulnerability has been resolved:
spi: cadence: Fix out-of-bounds array access in cdns_mrvl_xspi_setup_clock()
If requested_clk > 128, cdns_mrvl_xspi_setup_clock() iterates over the
entire cdns_mrvl_xspi_clk_div_list array without breaking out early,
causing 'i' to go beyond the array bounds.
Fix that by stopping the loop when it gets to the last entry, clamping
the clock to the minimum 6.25 MHz.
Fixes the following warning with an UBSAN kernel:
vmlinux.o: warning: objtool: cdns_mrvl_xspi_setup_clock: unexpected end of section .text.cdns_mrvl_xspi_setup_clock
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_tunnel: fix geneve_opt type confusion addition
When handling multiple NFTA_TUNNEL_KEY_OPTS_GENEVE attributes, the
parsing logic should place every geneve_opt structure one by one
compactly. Hence, when deciding the next geneve_opt position, the
pointer addition should be in units of char *.
However, the current implementation erroneously does type conversion
before the addition, which will lead to heap out-of-bounds write.
[ 6.989857] ==================================================================
[ 6.990293] BUG: KASAN: slab-out-of-bounds in nft_tunnel_obj_init+0x977/0xa70
[ 6.990725] Write of size 124 at addr ffff888005f18974 by task poc/178
[ 6.991162]
[ 6.991259] CPU: 0 PID: 178 Comm: poc-oob-write Not tainted 6.1.132 #1
[ 6.991655] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
[ 6.992281] Call Trace:
[ 6.992423] <TASK>
[ 6.992586] dump_stack_lvl+0x44/0x5c
[ 6.992801] print_report+0x184/0x4be
[ 6.993790] kasan_report+0xc5/0x100
[ 6.994252] kasan_check_range+0xf3/0x1a0
[ 6.994486] memcpy+0x38/0x60
[ 6.994692] nft_tunnel_obj_init+0x977/0xa70
[ 6.995677] nft_obj_init+0x10c/0x1b0
[ 6.995891] nf_tables_newobj+0x585/0x950
[ 6.996922] nfnetlink_rcv_batch+0xdf9/0x1020
[ 6.998997] nfnetlink_rcv+0x1df/0x220
[ 6.999537] netlink_unicast+0x395/0x530
[ 7.000771] netlink_sendmsg+0x3d0/0x6d0
[ 7.001462] __sock_sendmsg+0x99/0xa0
[ 7.001707] ____sys_sendmsg+0x409/0x450
[ 7.002391] ___sys_sendmsg+0xfd/0x170
[ 7.003145] __sys_sendmsg+0xea/0x170
[ 7.004359] do_syscall_64+0x5e/0x90
[ 7.005817] entry_SYSCALL_64_after_hwframe+0x6e/0xd8
[ 7.006127] RIP: 0033:0x7ec756d4e407
[ 7.006339] Code: 48 89 fa 4c 89 df e8 38 aa 00 00 8b 93 08 03 00 00 59 5e 48 83 f8 fc 74 1a 5b c3 0f 1f 84 00 00 00 00 00 48 8b 44 24 10 0f 05 <5b> c3 0f 1f 80 00 00 00 00 83 e2 39 83 faf
[ 7.007364] RSP: 002b:00007ffed5d46760 EFLAGS: 00000202 ORIG_RAX: 000000000000002e
[ 7.007827] RAX: ffffffffffffffda RBX: 00007ec756cc4740 RCX: 00007ec756d4e407
[ 7.008223] RDX: 0000000000000000 RSI: 00007ffed5d467f0 RDI: 0000000000000003
[ 7.008620] RBP: 00007ffed5d468a0 R08: 0000000000000000 R09: 0000000000000000
[ 7.009039] R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000000
[ 7.009429] R13: 00007ffed5d478b0 R14: 00007ec756ee5000 R15: 00005cbd4e655cb8
Fix this bug with correct pointer addition and conversion in parse
and dump code.
In the Linux kernel, the following vulnerability has been resolved:
net: decrease cached dst counters in dst_release
Upstream fix ac888d58869b ("net: do not delay dst_entries_add() in
dst_release()") moved decrementing the dst count from dst_destroy to
dst_release to avoid accessing already freed data in case of netns
dismantle. However in case CONFIG_DST_CACHE is enabled and OvS+tunnels
are used, this fix is incomplete as the same issue will be seen for
cached dsts:
Unable to handle kernel paging request at virtual address ffff5aabf6b5c000
Call trace:
percpu_counter_add_batch+0x3c/0x160 (P)
dst_release+0xec/0x108
dst_cache_destroy+0x68/0xd8
dst_destroy+0x13c/0x168
dst_destroy_rcu+0x1c/0xb0
rcu_do_batch+0x18c/0x7d0
rcu_core+0x174/0x378
rcu_core_si+0x18/0x30
Fix this by invalidating the cache, and thus decrementing cached dst
counters, in dst_release too.
In the Linux kernel, the following vulnerability has been resolved:
udp: Fix memory accounting leak.
Matt Dowling reported a weird UDP memory usage issue.
Under normal operation, the UDP memory usage reported in /proc/net/sockstat
remains close to zero. However, it occasionally spiked to 524,288 pages
and never dropped. Moreover, the value doubled when the application was
terminated. Finally, it caused intermittent packet drops.
We can reproduce the issue with the script below [0]:
1. /proc/net/sockstat reports 0 pages
# cat /proc/net/sockstat | grep UDP:
UDP: inuse 1 mem 0
2. Run the script till the report reaches 524,288
# python3 test.py & sleep 5
# cat /proc/net/sockstat | grep UDP:
UDP: inuse 3 mem 524288 <-- (INT_MAX + 1) >> PAGE_SHIFT
3. Kill the socket and confirm the number never drops
# pkill python3 && sleep 5
# cat /proc/net/sockstat | grep UDP:
UDP: inuse 1 mem 524288
4. (necessary since v6.0) Trigger proto_memory_pcpu_drain()
# python3 test.py & sleep 1 && pkill python3
5. The number doubles
# cat /proc/net/sockstat | grep UDP:
UDP: inuse 1 mem 1048577
The application set INT_MAX to SO_RCVBUF, which triggered an integer
overflow in udp_rmem_release().
When a socket is close()d, udp_destruct_common() purges its receive
queue and sums up skb->truesize in the queue. This total is calculated
and stored in a local unsigned integer variable.
The total size is then passed to udp_rmem_release() to adjust memory
accounting. However, because the function takes a signed integer
argument, the total size can wrap around, causing an overflow.
Then, the released amount is calculated as follows:
1) Add size to sk->sk_forward_alloc.
2) Round down sk->sk_forward_alloc to the nearest lower multiple of
PAGE_SIZE and assign it to amount.
3) Subtract amount from sk->sk_forward_alloc.
4) Pass amount >> PAGE_SHIFT to __sk_mem_reduce_allocated().
When the issue occurred, the total in udp_destruct_common() was 2147484480
(INT_MAX + 833), which was cast to -2147482816 in udp_rmem_release().
At 1) sk->sk_forward_alloc is changed from 3264 to -2147479552, and
2) sets -2147479552 to amount. 3) reverts the wraparound, so we don't
see a warning in inet_sock_destruct(). However, udp_memory_allocated
ends up doubling at 4).
Since commit 3cd3399dd7a8 ("net: implement per-cpu reserves for
memory_allocated"), memory usage no longer doubles immediately after
a socket is close()d because __sk_mem_reduce_allocated() caches the
amount in udp_memory_per_cpu_fw_alloc. However, the next time a UDP
socket receives a packet, the subtraction takes effect, causing UDP
memory usage to double.
This issue makes further memory allocation fail once the socket's
sk->sk_rmem_alloc exceeds net.ipv4.udp_rmem_min, resulting in packet
drops.
To prevent this issue, let's use unsigned int for the calculation and
call sk_forward_alloc_add() only once for the small delta.
Note that first_packet_length() also potentially has the same problem.
[0]:
from socket import *
SO_RCVBUFFORCE = 33
INT_MAX = (2 ** 31) - 1
s = socket(AF_INET, SOCK_DGRAM)
s.bind(('', 0))
s.setsockopt(SOL_SOCKET, SO_RCVBUFFORCE, INT_MAX)
c = socket(AF_INET, SOCK_DGRAM)
c.connect(s.getsockname())
data = b'a' * 100
while True:
c.send(data)
In the Linux kernel, the following vulnerability has been resolved:
udp: Fix multiple wraparounds of sk->sk_rmem_alloc.
__udp_enqueue_schedule_skb() has the following condition:
if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
goto drop;
sk->sk_rcvbuf is initialised by net.core.rmem_default and later can
be configured by SO_RCVBUF, which is limited by net.core.rmem_max,
or SO_RCVBUFFORCE.
If we set INT_MAX to sk->sk_rcvbuf, the condition is always false
as sk->sk_rmem_alloc is also signed int.
Then, the size of the incoming skb is added to sk->sk_rmem_alloc
unconditionally.
This results in integer overflow (possibly multiple times) on
sk->sk_rmem_alloc and allows a single socket to have skb up to
net.core.udp_mem[1].
For example, if we set a large value to udp_mem[1] and INT_MAX to
sk->sk_rcvbuf and flood packets to the socket, we can see multiple
overflows:
# cat /proc/net/sockstat | grep UDP:
UDP: inuse 3 mem 7956736 <-- (7956736 << 12) bytes > INT_MAX * 15
^- PAGE_SHIFT
# ss -uam
State Recv-Q ...
UNCONN -1757018048 ... <-- flipping the sign repeatedly
skmem:(r2537949248,rb2147483646,t0,tb212992,f1984,w0,o0,bl0,d0)
Previously, we had a boundary check for INT_MAX, which was removed by
commit 6a1f12dd85a8 ("udp: relax atomic operation on sk->sk_rmem_alloc").
A complete fix would be to revert it and cap the right operand by
INT_MAX:
rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
if (rmem > min(size + (unsigned int)sk->sk_rcvbuf, INT_MAX))
goto uncharge_drop;
but we do not want to add the expensive atomic_add_return() back just
for the corner case.
Casting rmem to unsigned int prevents multiple wraparounds, but we still
allow a single wraparound.
# cat /proc/net/sockstat | grep UDP:
UDP: inuse 3 mem 524288 <-- (INT_MAX + 1) >> 12
# ss -uam
State Recv-Q ...
UNCONN -2147482816 ... <-- INT_MAX + 831 bytes
skmem:(r2147484480,rb2147483646,t0,tb212992,f3264,w0,o0,bl0,d14468947)
So, let's define rmem and rcvbuf as unsigned int and check skb->truesize
only when rcvbuf is large enough to lower the overflow possibility.
Note that we still have a small chance to see overflow if multiple skbs
to the same socket are processed on different core at the same time and
each size does not exceed the limit but the total size does.
Note also that we must ignore skb->truesize for a small buffer as
explained in commit 363dc73acacb ("udp: be less conservative with
sock rmem accounting").
In the Linux kernel, the following vulnerability has been resolved:
net: mvpp2: Prevent parser TCAM memory corruption
Protect the parser TCAM/SRAM memory, and the cached (shadow) SRAM
information, from concurrent modifications.
Both the TCAM and SRAM tables are indirectly accessed by configuring
an index register that selects the row to read or write to. This means
that operations must be atomic in order to, e.g., avoid spreading
writes across multiple rows. Since the shadow SRAM array is used to
find free rows in the hardware table, it must also be protected in
order to avoid TOCTOU errors where multiple cores allocate the same
row.
This issue was detected in a situation where `mvpp2_set_rx_mode()` ran
concurrently on two CPUs. In this particular case the
MVPP2_PE_MAC_UC_PROMISCUOUS entry was corrupted, causing the
classifier unit to drop all incoming unicast - indicated by the
`rx_classifier_drops` counter.
In the Linux kernel, the following vulnerability has been resolved:
net: airoha: Fix qid report in airoha_tc_get_htb_get_leaf_queue()
Fix the following kernel warning deleting HTB offloaded leafs and/or root
HTB qdisc in airoha_eth driver properly reporting qid in
airoha_tc_get_htb_get_leaf_queue routine.
$tc qdisc replace dev eth1 root handle 10: htb offload
$tc class add dev eth1 arent 10: classid 10:4 htb rate 100mbit ceil 100mbit
$tc qdisc replace dev eth1 parent 10:4 handle 4: ets bands 8 \
quanta 1514 3028 4542 6056 7570 9084 10598 12112
$tc qdisc del dev eth1 root
[ 55.827864] ------------[ cut here ]------------
[ 55.832493] WARNING: CPU: 3 PID: 2678 at 0xffffffc0798695a4
[ 55.956510] CPU: 3 PID: 2678 Comm: tc Tainted: G O 6.6.71 #0
[ 55.963557] Hardware name: Airoha AN7581 Evaluation Board (DT)
[ 55.969383] pstate: 20400005 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 55.976344] pc : 0xffffffc0798695a4
[ 55.979851] lr : 0xffffffc079869a20
[ 55.983358] sp : ffffffc0850536a0
[ 55.986665] x29: ffffffc0850536a0 x28: 0000000000000024 x27: 0000000000000001
[ 55.993800] x26: 0000000000000000 x25: ffffff8008b19000 x24: ffffff800222e800
[ 56.000935] x23: 0000000000000001 x22: 0000000000000000 x21: ffffff8008b19000
[ 56.008071] x20: ffffff8002225800 x19: ffffff800379d000 x18: 0000000000000000
[ 56.015206] x17: ffffffbf9ea59000 x16: ffffffc080018000 x15: 0000000000000000
[ 56.022342] x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000001
[ 56.029478] x11: ffffffc081471008 x10: ffffffc081575a98 x9 : 0000000000000000
[ 56.036614] x8 : ffffffc08167fd40 x7 : ffffffc08069e104 x6 : ffffff8007f86000
[ 56.043748] x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000001
[ 56.050884] x2 : 0000000000000000 x1 : 0000000000000250 x0 : ffffff800222c000
[ 56.058020] Call trace:
[ 56.060459] 0xffffffc0798695a4
[ 56.063618] 0xffffffc079869a20
[ 56.066777] __qdisc_destroy+0x40/0xa0
[ 56.070528] qdisc_put+0x54/0x6c
[ 56.073748] qdisc_graft+0x41c/0x648
[ 56.077324] tc_get_qdisc+0x168/0x2f8
[ 56.080978] rtnetlink_rcv_msg+0x230/0x330
[ 56.085076] netlink_rcv_skb+0x5c/0x128
[ 56.088913] rtnetlink_rcv+0x14/0x1c
[ 56.092490] netlink_unicast+0x1e0/0x2c8
[ 56.096413] netlink_sendmsg+0x198/0x3c8
[ 56.100337] ____sys_sendmsg+0x1c4/0x274
[ 56.104261] ___sys_sendmsg+0x7c/0xc0
[ 56.107924] __sys_sendmsg+0x44/0x98
[ 56.111492] __arm64_sys_sendmsg+0x20/0x28
[ 56.115580] invoke_syscall.constprop.0+0x58/0xfc
[ 56.120285] do_el0_svc+0x3c/0xbc
[ 56.123592] el0_svc+0x18/0x4c
[ 56.126647] el0t_64_sync_handler+0x118/0x124
[ 56.131005] el0t_64_sync+0x150/0x154
[ 56.134660] ---[ end trace 0000000000000000 ]---
In the Linux kernel, the following vulnerability has been resolved:
sctp: add mutual exclusion in proc_sctp_do_udp_port()
We must serialize calls to sctp_udp_sock_stop() and sctp_udp_sock_start()
or risk a crash as syzbot reported:
Oops: general protection fault, probably for non-canonical address 0xdffffc000000000d: 0000 [#1] SMP KASAN PTI
KASAN: null-ptr-deref in range [0x0000000000000068-0x000000000000006f]
CPU: 1 UID: 0 PID: 6551 Comm: syz.1.44 Not tainted 6.14.0-syzkaller-g7f2ff7b62617 #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/12/2025
RIP: 0010:kernel_sock_shutdown+0x47/0x70 net/socket.c:3653
Call Trace:
<TASK>
udp_tunnel_sock_release+0x68/0x80 net/ipv4/udp_tunnel_core.c:181
sctp_udp_sock_stop+0x71/0x160 net/sctp/protocol.c:930
proc_sctp_do_udp_port+0x264/0x450 net/sctp/sysctl.c:553
proc_sys_call_handler+0x3d0/0x5b0 fs/proc/proc_sysctl.c:601
iter_file_splice_write+0x91c/0x1150 fs/splice.c:738
do_splice_from fs/splice.c:935 [inline]
direct_splice_actor+0x18f/0x6c0 fs/splice.c:1158
splice_direct_to_actor+0x342/0xa30 fs/splice.c:1102
do_splice_direct_actor fs/splice.c:1201 [inline]
do_splice_direct+0x174/0x240 fs/splice.c:1227
do_sendfile+0xafd/0xe50 fs/read_write.c:1368
__do_sys_sendfile64 fs/read_write.c:1429 [inline]
__se_sys_sendfile64 fs/read_write.c:1415 [inline]
__x64_sys_sendfile64+0x1d8/0x220 fs/read_write.c:1415
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
In the Linux kernel, the following vulnerability has been resolved:
netlabel: Fix NULL pointer exception caused by CALIPSO on IPv4 sockets
When calling netlbl_conn_setattr(), addr->sa_family is used
to determine the function behavior. If sk is an IPv4 socket,
but the connect function is called with an IPv6 address,
the function calipso_sock_setattr() is triggered.
Inside this function, the following code is executed:
sk_fullsock(__sk) ? inet_sk(__sk)->pinet6 : NULL;
Since sk is an IPv4 socket, pinet6 is NULL, leading to a
null pointer dereference.
This patch fixes the issue by checking if inet6_sk(sk)
returns a NULL pointer before accessing pinet6.