Security Vulnerabilities
- CVEs Published In April 2025
In the Linux kernel, the following vulnerability has been resolved:
ocfs2: validate l_tree_depth to avoid out-of-bounds access
The l_tree_depth field is 16-bit (__le16), but the actual maximum depth is
limited to OCFS2_MAX_PATH_DEPTH.
Add a check to prevent out-of-bounds access if l_tree_depth has an invalid
value, which may occur when reading from a corrupted mounted disk [1].
In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Prevent integer overflow in hdr_first_de()
The "de_off" and "used" variables come from the disk so they both need to
check. The problem is that on 32bit systems if they're both greater than
UINT_MAX - 16 then the check does work as intended because of an integer
overflow.
In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Fix a couple integer overflows on 32bit systems
On 32bit systems the "off + sizeof(struct NTFS_DE)" addition can
have an integer wrapping issue. Fix it by using size_add().
In the Linux kernel, the following vulnerability has been resolved:
iio: backend: make sure to NULL terminate stack buffer
Make sure to NULL terminate the buffer in
iio_backend_debugfs_write_reg() before passing it to sscanf(). It is a
stack variable so we should not assume it will 0 initialized.
In the Linux kernel, the following vulnerability has been resolved:
vhost-scsi: Fix handling of multiple calls to vhost_scsi_set_endpoint
If vhost_scsi_set_endpoint is called multiple times without a
vhost_scsi_clear_endpoint between them, we can hit multiple bugs
found by Haoran Zhang:
1. Use-after-free when no tpgs are found:
This fixes a use after free that occurs when vhost_scsi_set_endpoint is
called more than once and calls after the first call do not find any
tpgs to add to the vs_tpg. When vhost_scsi_set_endpoint first finds
tpgs to add to the vs_tpg array match=true, so we will do:
vhost_vq_set_backend(vq, vs_tpg);
...
kfree(vs->vs_tpg);
vs->vs_tpg = vs_tpg;
If vhost_scsi_set_endpoint is called again and no tpgs are found
match=false so we skip the vhost_vq_set_backend call leaving the
pointer to the vs_tpg we then free via:
kfree(vs->vs_tpg);
vs->vs_tpg = vs_tpg;
If a scsi request is then sent we do:
vhost_scsi_handle_vq -> vhost_scsi_get_req -> vhost_vq_get_backend
which sees the vs_tpg we just did a kfree on.
2. Tpg dir removal hang:
This patch fixes an issue where we cannot remove a LIO/target layer
tpg (and structs above it like the target) dir due to the refcount
dropping to -1.
The problem is that if vhost_scsi_set_endpoint detects a tpg is already
in the vs->vs_tpg array or if the tpg has been removed so
target_depend_item fails, the undepend goto handler will do
target_undepend_item on all tpgs in the vs_tpg array dropping their
refcount to 0. At this time vs_tpg contains both the tpgs we have added
in the current vhost_scsi_set_endpoint call as well as tpgs we added in
previous calls which are also in vs->vs_tpg.
Later, when vhost_scsi_clear_endpoint runs it will do
target_undepend_item on all the tpgs in the vs->vs_tpg which will drop
their refcount to -1. Userspace will then not be able to remove the tpg
and will hang when it tries to do rmdir on the tpg dir.
3. Tpg leak:
This fixes a bug where we can leak tpgs and cause them to be
un-removable because the target name is overwritten when
vhost_scsi_set_endpoint is called multiple times but with different
target names.
The bug occurs if a user has called VHOST_SCSI_SET_ENDPOINT and setup
a vhost-scsi device to target/tpg mapping, then calls
VHOST_SCSI_SET_ENDPOINT again with a new target name that has tpgs we
haven't seen before (target1 has tpg1 but target2 has tpg2). When this
happens we don't teardown the old target tpg mapping and just overwrite
the target name and the vs->vs_tpg array. Later when we do
vhost_scsi_clear_endpoint, we are passed in either target1 or target2's
name and we will only match that target's tpgs when we loop over the
vs->vs_tpg. We will then return from the function without doing
target_undepend_item on the tpgs.
Because of all these bugs, it looks like being able to call
vhost_scsi_set_endpoint multiple times was never supported. The major
user, QEMU, already has checks to prevent this use case. So to fix the
issues, this patch prevents vhost_scsi_set_endpoint from being called
if it's already successfully added tpgs. To add, remove or change the
tpg config or target name, you must do a vhost_scsi_clear_endpoint
first.
In the Linux kernel, the following vulnerability has been resolved:
w1: fix NULL pointer dereference in probe
The w1_uart_probe() function calls w1_uart_serdev_open() (which includes
devm_serdev_device_open()) before setting the client ops via
serdev_device_set_client_ops(). This ordering can trigger a NULL pointer
dereference in the serdev controller's receive_buf handler, as it assumes
serdev->ops is valid when SERPORT_ACTIVE is set.
This is similar to the issue fixed in commit 5e700b384ec1
("platform/chrome: cros_ec_uart: properly fix race condition") where
devm_serdev_device_open() was called before fully initializing the
device.
Fix the race by ensuring client ops are set before enabling the port via
w1_uart_serdev_open().
In the Linux kernel, the following vulnerability has been resolved:
RDMA/core: Fix use-after-free when rename device name
Syzbot reported a slab-use-after-free with the following call trace:
==================================================================
BUG: KASAN: slab-use-after-free in nla_put+0xd3/0x150 lib/nlattr.c:1099
Read of size 5 at addr ffff888140ea1c60 by task syz.0.988/10025
CPU: 0 UID: 0 PID: 10025 Comm: syz.0.988
Not tainted 6.14.0-rc4-syzkaller-00859-gf77f12010f67 #0
Hardware name: Google Compute Engine, BIOS Google 02/12/2025
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:408 [inline]
print_report+0x16e/0x5b0 mm/kasan/report.c:521
kasan_report+0x143/0x180 mm/kasan/report.c:634
kasan_check_range+0x282/0x290 mm/kasan/generic.c:189
__asan_memcpy+0x29/0x70 mm/kasan/shadow.c:105
nla_put+0xd3/0x150 lib/nlattr.c:1099
nla_put_string include/net/netlink.h:1621 [inline]
fill_nldev_handle+0x16e/0x200 drivers/infiniband/core/nldev.c:265
rdma_nl_notify_event+0x561/0xef0 drivers/infiniband/core/nldev.c:2857
ib_device_notify_register+0x22/0x230 drivers/infiniband/core/device.c:1344
ib_register_device+0x1292/0x1460 drivers/infiniband/core/device.c:1460
rxe_register_device+0x233/0x350 drivers/infiniband/sw/rxe/rxe_verbs.c:1540
rxe_net_add+0x74/0xf0 drivers/infiniband/sw/rxe/rxe_net.c:550
rxe_newlink+0xde/0x1a0 drivers/infiniband/sw/rxe/rxe.c:212
nldev_newlink+0x5ea/0x680 drivers/infiniband/core/nldev.c:1795
rdma_nl_rcv_skb drivers/infiniband/core/netlink.c:239 [inline]
rdma_nl_rcv+0x6dd/0x9e0 drivers/infiniband/core/netlink.c:259
netlink_unicast_kernel net/netlink/af_netlink.c:1313 [inline]
netlink_unicast+0x7f6/0x990 net/netlink/af_netlink.c:1339
netlink_sendmsg+0x8de/0xcb0 net/netlink/af_netlink.c:1883
sock_sendmsg_nosec net/socket.c:709 [inline]
__sock_sendmsg+0x221/0x270 net/socket.c:724
____sys_sendmsg+0x53a/0x860 net/socket.c:2564
___sys_sendmsg net/socket.c:2618 [inline]
__sys_sendmsg+0x269/0x350 net/socket.c:2650
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f42d1b8d169
Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 ...
RSP: 002b:00007f42d2960038 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
RAX: ffffffffffffffda RBX: 00007f42d1da6320 RCX: 00007f42d1b8d169
RDX: 0000000000000000 RSI: 00004000000002c0 RDI: 000000000000000c
RBP: 00007f42d1c0e2a0 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 0000000000000000 R14: 00007f42d1da6320 R15: 00007ffe399344a8
</TASK>
Allocated by task 10025:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:394
kasan_kmalloc include/linux/kasan.h:260 [inline]
__do_kmalloc_node mm/slub.c:4294 [inline]
__kmalloc_node_track_caller_noprof+0x28b/0x4c0 mm/slub.c:4313
__kmemdup_nul mm/util.c:61 [inline]
kstrdup+0x42/0x100 mm/util.c:81
kobject_set_name_vargs+0x61/0x120 lib/kobject.c:274
dev_set_name+0xd5/0x120 drivers/base/core.c:3468
assign_name drivers/infiniband/core/device.c:1202 [inline]
ib_register_device+0x178/0x1460 drivers/infiniband/core/device.c:1384
rxe_register_device+0x233/0x350 drivers/infiniband/sw/rxe/rxe_verbs.c:1540
rxe_net_add+0x74/0xf0 drivers/infiniband/sw/rxe/rxe_net.c:550
rxe_newlink+0xde/0x1a0 drivers/infiniband/sw/rxe/rxe.c:212
nldev_newlink+0x5ea/0x680 drivers/infiniband/core/nldev.c:1795
rdma_nl_rcv_skb drivers/infiniband/core/netlink.c:239 [inline]
rdma_nl_rcv+0x6dd/0x9e0 drivers/infiniband/core/netlink.c:259
netlink_unicast_kernel net/netlink/af_netlink.c:1313 [inline]
netlink_unicast+0x7f6/0x990 net/netlink/af_netlink.c:1339
netlink_sendmsg+0x8de/0xcb0 net
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
RDMA/mlx5: Fix mlx5_poll_one() cur_qp update flow
When cur_qp isn't NULL, in order to avoid fetching the QP from
the radix tree again we check if the next cqe QP is identical to
the one we already have.
The bug however is that we are checking if the QP is identical by
checking the QP number inside the CQE against the QP number inside the
mlx5_ib_qp, but that's wrong since the QP number from the CQE is from
FW so it should be matched against mlx5_core_qp which is our FW QP
number.
Otherwise we could use the wrong QP when handling a CQE which could
cause the kernel trace below.
This issue is mainly noticeable over QPs 0 & 1, since for now they are
the only QPs in our driver whereas the QP number inside mlx5_ib_qp
doesn't match the QP number inside mlx5_core_qp.
BUG: kernel NULL pointer dereference, address: 0000000000000012
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP
CPU: 0 UID: 0 PID: 7927 Comm: kworker/u62:1 Not tainted 6.14.0-rc3+ #189
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014
Workqueue: ib-comp-unb-wq ib_cq_poll_work [ib_core]
RIP: 0010:mlx5_ib_poll_cq+0x4c7/0xd90 [mlx5_ib]
Code: 03 00 00 8d 58 ff 21 cb 66 39 d3 74 39 48 c7 c7 3c 89 6e a0 0f b7 db e8 b7 d2 b3 e0 49 8b 86 60 03 00 00 48 c7 c7 4a 89 6e a0 <0f> b7 5c 98 02 e8 9f d2 b3 e0 41 0f b7 86 78 03 00 00 83 e8 01 21
RSP: 0018:ffff88810511bd60 EFLAGS: 00010046
RAX: 0000000000000010 RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffff88885fa1b3c0 RDI: ffffffffa06e894a
RBP: 00000000000000b0 R08: 0000000000000000 R09: ffff88810511bc10
R10: 0000000000000001 R11: 0000000000000001 R12: ffff88810d593000
R13: ffff88810e579108 R14: ffff888105146000 R15: 00000000000000b0
FS: 0000000000000000(0000) GS:ffff88885fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000012 CR3: 00000001077e6001 CR4: 0000000000370eb0
Call Trace:
<TASK>
? __die+0x20/0x60
? page_fault_oops+0x150/0x3e0
? exc_page_fault+0x74/0x130
? asm_exc_page_fault+0x22/0x30
? mlx5_ib_poll_cq+0x4c7/0xd90 [mlx5_ib]
__ib_process_cq+0x5a/0x150 [ib_core]
ib_cq_poll_work+0x31/0x90 [ib_core]
process_one_work+0x169/0x320
worker_thread+0x288/0x3a0
? work_busy+0xb0/0xb0
kthread+0xd7/0x1f0
? kthreads_online_cpu+0x130/0x130
? kthreads_online_cpu+0x130/0x130
ret_from_fork+0x2d/0x50
? kthreads_online_cpu+0x130/0x130
ret_from_fork_asm+0x11/0x20
</TASK>
In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix array bounds error with may_goto
may_goto uses an additional 8 bytes on the stack, which causes the
interpreters[] array to go out of bounds when calculating index by
stack_size.
1. If a BPF program is rewritten, re-evaluate the stack size. For non-JIT
cases, reject loading directly.
2. For non-JIT cases, calculating interpreters[idx] may still cause
out-of-bounds array access, and just warn about it.
3. For jit_requested cases, the execution of bpf_func also needs to be
warned. So move the definition of function __bpf_prog_ret0_warn out of
the macro definition CONFIG_BPF_JIT_ALWAYS_ON.
In the Linux kernel, the following vulnerability has been resolved:
ublk: make sure ubq->canceling is set when queue is frozen
Now ublk driver depends on `ubq->canceling` for deciding if the request
can be dispatched via uring_cmd & io_uring_cmd_complete_in_task().
Once ubq->canceling is set, the uring_cmd can be done via ublk_cancel_cmd()
and io_uring_cmd_done().
So set ubq->canceling when queue is frozen, this way makes sure that the
flag can be observed from ublk_queue_rq() reliably, and avoids
use-after-free on uring_cmd.