Security Vulnerabilities
- CVEs Published In April 2024
In the Linux kernel, the following vulnerability has been resolved:
nfc: nci: free rx_data_reassembly skb on NCI device cleanup
rx_data_reassembly skb is stored during NCI data exchange for processing
fragmented packets. It is dropped only when the last fragment is processed
or when an NTF packet with NCI_OP_RF_DEACTIVATE_NTF opcode is received.
However, the NCI device may be deallocated before that which leads to skb
leak.
As by design the rx_data_reassembly skb is bound to the NCI device and
nothing prevents the device to be freed before the skb is processed in
some way and cleaned, free it on the NCI device cleanup.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix data re-injection from stale subflow
When the MPTCP PM detects that a subflow is stale, all the packet
scheduler must re-inject all the mptcp-level unacked data. To avoid
acquiring unneeded locks, it first try to check if any unacked data
is present at all in the RTX queue, but such check is currently
broken, as it uses TCP-specific helper on an MPTCP socket.
Funnily enough fuzzers and static checkers are happy, as the accessed
memory still belongs to the mptcp_sock struct, and even from a
functional perspective the recovery completed successfully, as
the short-cut test always failed.
A recent unrelated TCP change - commit d5fed5addb2b ("tcp: reorganize
tcp_sock fast path variables") - exposed the issue, as the tcp field
reorganization makes the mptcp code always skip the re-inection.
Fix the issue dropping the bogus call: we are on a slow path, the early
optimization proved once again to be evil.
In the Linux kernel, the following vulnerability has been resolved:
cifs: fix underflow in parse_server_interfaces()
In this loop, we step through the buffer and after each item we check
if the size_left is greater than the minimum size we need. However,
the problem is that "bytes_left" is type ssize_t while sizeof() is type
size_t. That means that because of type promotion, the comparison is
done as an unsigned and if we have negative bytes left the loop
continues instead of ending.
In the Linux kernel, the following vulnerability has been resolved:
media: ir_toy: fix a memleak in irtoy_tx
When irtoy_command fails, buf should be freed since it is allocated by
irtoy_tx, or there is a memleak.
In the Linux kernel, the following vulnerability has been resolved:
i40e: Do not allow untrusted VF to remove administratively set MAC
Currently when PF administratively sets VF's MAC address and the VF
is put down (VF tries to delete all MACs) then the MAC is removed
from MAC filters and primary VF MAC is zeroed.
Do not allow untrusted VF to remove primary MAC when it was set
administratively by PF.
Reproducer:
1) Create VF
2) Set VF interface up
3) Administratively set the VF's MAC
4) Put VF interface down
[root@host ~]# echo 1 > /sys/class/net/enp2s0f0/device/sriov_numvfs
[root@host ~]# ip link set enp2s0f0v0 up
[root@host ~]# ip link set enp2s0f0 vf 0 mac fe:6c:b5:da:c7:7d
[root@host ~]# ip link show enp2s0f0
23: enp2s0f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT group default qlen 1000
link/ether 3c:ec:ef:b7:dd:04 brd ff:ff:ff:ff:ff:ff
vf 0 link/ether fe:6c:b5:da:c7:7d brd ff:ff:ff:ff:ff:ff, spoof checking on, link-state auto, trust off
[root@host ~]# ip link set enp2s0f0v0 down
[root@host ~]# ip link show enp2s0f0
23: enp2s0f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT group default qlen 1000
link/ether 3c:ec:ef:b7:dd:04 brd ff:ff:ff:ff:ff:ff
vf 0 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff, spoof checking on, link-state auto, trust off
In the Linux kernel, the following vulnerability has been resolved:
net/handshake: Fix handshake_req_destroy_test1
Recently, handshake_req_destroy_test1 started failing:
Expected handshake_req_destroy_test == req, but
handshake_req_destroy_test == 0000000000000000
req == 0000000060f99b40
not ok 11 req_destroy works
This is because "sock_release(sock)" was replaced with "fput(filp)"
to address a memory leak. Note that sock_release() is synchronous
but fput() usually delays the final close and clean-up.
The delay is not consequential in the other cases that were changed
but handshake_req_destroy_test1 is testing that handshake_req_cancel()
followed by closing the file actually does call the ->hp_destroy
method. Thus the PTR_EQ test at the end has to be sure that the
final close is complete before it checks the pointer.
We cannot use a completion here because if ->hp_destroy is never
called (ie, there is an API bug) then the test will hang.
Reported by: Guenter Roeck <linux@roeck-us.net>
In the Linux kernel, the following vulnerability has been resolved:
mm: zswap: fix missing folio cleanup in writeback race path
In zswap_writeback_entry(), after we get a folio from
__read_swap_cache_async(), we grab the tree lock again to check that the
swap entry was not invalidated and recycled. If it was, we delete the
folio we just added to the swap cache and exit.
However, __read_swap_cache_async() returns the folio locked when it is
newly allocated, which is always true for this path, and the folio is
ref'd. Make sure to unlock and put the folio before returning.
This was discovered by code inspection, probably because this path handles
a race condition that should not happen often, and the bug would not crash
the system, it will only strand the folio indefinitely.
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix memory leak in dm_sw_fini()
After destroying dmub_srv, the memory associated with it is
not freed, causing a memory leak:
unreferenced object 0xffff896302b45800 (size 1024):
comm "(udev-worker)", pid 222, jiffies 4294894636
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc 6265fd77):
[<ffffffff993495ed>] kmalloc_trace+0x29d/0x340
[<ffffffffc0ea4a94>] dm_dmub_sw_init+0xb4/0x450 [amdgpu]
[<ffffffffc0ea4e55>] dm_sw_init+0x15/0x2b0 [amdgpu]
[<ffffffffc0ba8557>] amdgpu_device_init+0x1417/0x24e0 [amdgpu]
[<ffffffffc0bab285>] amdgpu_driver_load_kms+0x15/0x190 [amdgpu]
[<ffffffffc0ba09c7>] amdgpu_pci_probe+0x187/0x4e0 [amdgpu]
[<ffffffff9968fd1e>] local_pci_probe+0x3e/0x90
[<ffffffff996918a3>] pci_device_probe+0xc3/0x230
[<ffffffff99805872>] really_probe+0xe2/0x480
[<ffffffff99805c98>] __driver_probe_device+0x78/0x160
[<ffffffff99805daf>] driver_probe_device+0x1f/0x90
[<ffffffff9980601e>] __driver_attach+0xce/0x1c0
[<ffffffff99803170>] bus_for_each_dev+0x70/0xc0
[<ffffffff99804822>] bus_add_driver+0x112/0x210
[<ffffffff99807245>] driver_register+0x55/0x100
[<ffffffff990012d1>] do_one_initcall+0x41/0x300
Fix this by freeing dmub_srv after destroying it.
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_flow_offload: release dst in case direct xmit path is used
Direct xmit does not use it since it calls dev_queue_xmit() to send
packets, hence it calls dst_release().
kmemleak reports:
unreferenced object 0xffff88814f440900 (size 184):
comm "softirq", pid 0, jiffies 4294951896
hex dump (first 32 bytes):
00 60 5b 04 81 88 ff ff 00 e6 e8 82 ff ff ff ff .`[.............
21 0b 50 82 ff ff ff ff 00 00 00 00 00 00 00 00 !.P.............
backtrace (crc cb2bf5d6):
[<000000003ee17107>] kmem_cache_alloc+0x286/0x340
[<0000000021a5de2c>] dst_alloc+0x43/0xb0
[<00000000f0671159>] rt_dst_alloc+0x2e/0x190
[<00000000fe5092c9>] __mkroute_output+0x244/0x980
[<000000005fb96fb0>] ip_route_output_flow+0xc0/0x160
[<0000000045367433>] nf_ip_route+0xf/0x30
[<0000000085da1d8e>] nf_route+0x2d/0x60
[<00000000d1ecd1cb>] nft_flow_route+0x171/0x6a0 [nft_flow_offload]
[<00000000d9b2fb60>] nft_flow_offload_eval+0x4e8/0x700 [nft_flow_offload]
[<000000009f447dbb>] expr_call_ops_eval+0x53/0x330 [nf_tables]
[<00000000072e1be6>] nft_do_chain+0x17c/0x840 [nf_tables]
[<00000000d0551029>] nft_do_chain_inet+0xa1/0x210 [nf_tables]
[<0000000097c9d5c6>] nf_hook_slow+0x5b/0x160
[<0000000005eccab1>] ip_forward+0x8b6/0x9b0
[<00000000553a269b>] ip_rcv+0x221/0x230
[<00000000412872e5>] __netif_receive_skb_one_core+0xfe/0x110
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: set dormant flag on hook register failure
We need to set the dormant flag again if we fail to register
the hooks.
During memory pressure hook registration can fail and we end up
with a table marked as active but no registered hooks.
On table/base chain deletion, nf_tables will attempt to unregister
the hook again which yields a warn splat from the nftables core.