Security Vulnerabilities
- CVEs Published In April 2025
In the Linux kernel, the following vulnerability has been resolved:
md/raid10: wait barrier before returning discard request with REQ_NOWAIT
raid10_handle_discard should wait barrier before returning a discard bio
which has REQ_NOWAIT. And there is no need to print warning calltrace
if a discard bio has REQ_NOWAIT flag. Quality engineer usually checks
dmesg and reports error if dmesg has warning/error calltrace.
In the Linux kernel, the following vulnerability has been resolved:
jfs: reject on-disk inodes of an unsupported type
Syzbot has reported the following BUG:
kernel BUG at fs/inode.c:668!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI
CPU: 3 UID: 0 PID: 139 Comm: jfsCommit Not tainted 6.12.0-rc4-syzkaller-00085-g4e46774408d9 #0
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-3.fc41 04/01/2014
RIP: 0010:clear_inode+0x168/0x190
Code: 4c 89 f7 e8 ba fe e5 ff e9 61 ff ff ff 44 89 f1 80 e1 07 80 c1 03 38 c1 7c c1 4c 89 f7 e8 90 ff e5 ff eb b7
0b e8 01 5d 7f ff 90 0f 0b e8 f9 5c 7f ff 90 0f 0b e8 f1 5c 7f
RSP: 0018:ffffc900027dfae8 EFLAGS: 00010093
RAX: ffffffff82157a87 RBX: 0000000000000001 RCX: ffff888104d4b980
RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000000
RBP: ffffc900027dfc90 R08: ffffffff82157977 R09: fffff520004fbf38
R10: dffffc0000000000 R11: fffff520004fbf38 R12: dffffc0000000000
R13: ffff88811315bc00 R14: ffff88811315bda8 R15: ffff88811315bb80
FS: 0000000000000000(0000) GS:ffff888135f00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005565222e0578 CR3: 0000000026ef0000 CR4: 00000000000006f0
Call Trace:
<TASK>
? __die_body+0x5f/0xb0
? die+0x9e/0xc0
? do_trap+0x15a/0x3a0
? clear_inode+0x168/0x190
? do_error_trap+0x1dc/0x2c0
? clear_inode+0x168/0x190
? __pfx_do_error_trap+0x10/0x10
? report_bug+0x3cd/0x500
? handle_invalid_op+0x34/0x40
? clear_inode+0x168/0x190
? exc_invalid_op+0x38/0x50
? asm_exc_invalid_op+0x1a/0x20
? clear_inode+0x57/0x190
? clear_inode+0x167/0x190
? clear_inode+0x168/0x190
? clear_inode+0x167/0x190
jfs_evict_inode+0xb5/0x440
? __pfx_jfs_evict_inode+0x10/0x10
evict+0x4ea/0x9b0
? __pfx_evict+0x10/0x10
? iput+0x713/0xa50
txUpdateMap+0x931/0xb10
? __pfx_txUpdateMap+0x10/0x10
jfs_lazycommit+0x49a/0xb80
? _raw_spin_unlock_irqrestore+0x8f/0x140
? lockdep_hardirqs_on+0x99/0x150
? __pfx_jfs_lazycommit+0x10/0x10
? __pfx_default_wake_function+0x10/0x10
? __kthread_parkme+0x169/0x1d0
? __pfx_jfs_lazycommit+0x10/0x10
kthread+0x2f2/0x390
? __pfx_jfs_lazycommit+0x10/0x10
? __pfx_kthread+0x10/0x10
ret_from_fork+0x4d/0x80
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
This happens when 'clear_inode()' makes an attempt to finalize an underlying
JFS inode of unknown type. According to JFS layout description from
https://jfs.sourceforge.net/project/pub/jfslayout.pdf, inode types from 5 to
15 are reserved for future extensions and should not be encountered on a valid
filesystem. So add an extra check for valid inode type in 'copy_from_dinode()'.
In the Linux kernel, the following vulnerability has been resolved:
x86/resctrl: Fix allocation of cleanest CLOSID on platforms with no monitors
Commit
6eac36bb9eb0 ("x86/resctrl: Allocate the cleanest CLOSID by searching closid_num_dirty_rmid")
added logic that causes resctrl to search for the CLOSID with the fewest dirty
cache lines when creating a new control group, if requested by the arch code.
This depends on the values read from the llc_occupancy counters. The logic is
applicable to architectures where the CLOSID effectively forms part of the
monitoring identifier and so do not allow complete freedom to choose an unused
monitoring identifier for a given CLOSID.
This support missed that some platforms may not have these counters. This
causes a NULL pointer dereference when creating a new control group as the
array was not allocated by dom_data_init().
As this feature isn't necessary on platforms that don't have cache occupancy
monitors, add this to the check that occurs when a new control group is
allocated.
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Replace Mutex with Spinlock for RLCG register access to avoid Priority Inversion in SRIOV
RLCG Register Access is a way for virtual functions to safely access GPU
registers in a virtualized environment., including TLB flushes and
register reads. When multiple threads or VFs try to access the same
registers simultaneously, it can lead to race conditions. By using the
RLCG interface, the driver can serialize access to the registers. This
means that only one thread can access the registers at a time,
preventing conflicts and ensuring that operations are performed
correctly. Additionally, when a low-priority task holds a mutex that a
high-priority task needs, ie., If a thread holding a spinlock tries to
acquire a mutex, it can lead to priority inversion. register access in
amdgpu_virt_rlcg_reg_rw especially in a fast code path is critical.
The call stack shows that the function amdgpu_virt_rlcg_reg_rw is being
called, which attempts to acquire the mutex. This function is invoked
from amdgpu_sriov_wreg, which in turn is called from
gmc_v11_0_flush_gpu_tlb.
The [ BUG: Invalid wait context ] indicates that a thread is trying to
acquire a mutex while it is in a context that does not allow it to sleep
(like holding a spinlock).
Fixes the below:
[ 253.013423] =============================
[ 253.013434] [ BUG: Invalid wait context ]
[ 253.013446] 6.12.0-amdstaging-drm-next-lol-050225 #14 Tainted: G U OE
[ 253.013464] -----------------------------
[ 253.013475] kworker/0:1/10 is trying to lock:
[ 253.013487] ffff9f30542e3cf8 (&adev->virt.rlcg_reg_lock){+.+.}-{3:3}, at: amdgpu_virt_rlcg_reg_rw+0xf6/0x330 [amdgpu]
[ 253.013815] other info that might help us debug this:
[ 253.013827] context-{4:4}
[ 253.013835] 3 locks held by kworker/0:1/10:
[ 253.013847] #0: ffff9f3040050f58 ((wq_completion)events){+.+.}-{0:0}, at: process_one_work+0x3f5/0x680
[ 253.013877] #1: ffffb789c008be40 ((work_completion)(&wfc.work)){+.+.}-{0:0}, at: process_one_work+0x1d6/0x680
[ 253.013905] #2: ffff9f3054281838 (&adev->gmc.invalidate_lock){+.+.}-{2:2}, at: gmc_v11_0_flush_gpu_tlb+0x198/0x4f0 [amdgpu]
[ 253.014154] stack backtrace:
[ 253.014164] CPU: 0 UID: 0 PID: 10 Comm: kworker/0:1 Tainted: G U OE 6.12.0-amdstaging-drm-next-lol-050225 #14
[ 253.014189] Tainted: [U]=USER, [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
[ 253.014203] Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS Hyper-V UEFI Release v4.1 11/18/2024
[ 253.014224] Workqueue: events work_for_cpu_fn
[ 253.014241] Call Trace:
[ 253.014250] <TASK>
[ 253.014260] dump_stack_lvl+0x9b/0xf0
[ 253.014275] dump_stack+0x10/0x20
[ 253.014287] __lock_acquire+0xa47/0x2810
[ 253.014303] ? srso_alias_return_thunk+0x5/0xfbef5
[ 253.014321] lock_acquire+0xd1/0x300
[ 253.014333] ? amdgpu_virt_rlcg_reg_rw+0xf6/0x330 [amdgpu]
[ 253.014562] ? __lock_acquire+0xa6b/0x2810
[ 253.014578] __mutex_lock+0x85/0xe20
[ 253.014591] ? amdgpu_virt_rlcg_reg_rw+0xf6/0x330 [amdgpu]
[ 253.014782] ? sched_clock_noinstr+0x9/0x10
[ 253.014795] ? srso_alias_return_thunk+0x5/0xfbef5
[ 253.014808] ? local_clock_noinstr+0xe/0xc0
[ 253.014822] ? amdgpu_virt_rlcg_reg_rw+0xf6/0x330 [amdgpu]
[ 253.015012] ? srso_alias_return_thunk+0x5/0xfbef5
[ 253.015029] mutex_lock_nested+0x1b/0x30
[ 253.015044] ? mutex_lock_nested+0x1b/0x30
[ 253.015057] amdgpu_virt_rlcg_reg_rw+0xf6/0x330 [amdgpu]
[ 253.015249] amdgpu_sriov_wreg+0xc5/0xd0 [amdgpu]
[ 253.015435] gmc_v11_0_flush_gpu_tlb+0x44b/0x4f0 [amdgpu]
[ 253.015667] gfx_v11_0_hw_init+0x499/0x29c0 [amdgpu]
[ 253.015901] ? __pfx_smu_v13_0_update_pcie_parameters+0x10/0x10 [amdgpu]
[ 253.016159] ? srso_alias_return_thunk+0x5/0xfbef5
[ 253.016173] ? smu_hw_init+0x18d/0x300 [amdgpu]
[ 253.016403] amdgpu_device_init+0x29ad/0x36a0 [amdgpu]
[ 253.016614] amdgpu_driver_load_kms+0x1a/0xc0 [amdgpu]
[ 253.0170
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
remoteproc: core: Clear table_sz when rproc_shutdown
There is case as below could trigger kernel dump:
Use U-Boot to start remote processor(rproc) with resource table
published to a fixed address by rproc. After Kernel boots up,
stop the rproc, load a new firmware which doesn't have resource table
,and start rproc.
When starting rproc with a firmware not have resource table,
`memcpy(loaded_table, rproc->cached_table, rproc->table_sz)` will
trigger dump, because rproc->cache_table is set to NULL during the last
stop operation, but rproc->table_sz is still valid.
This issue is found on i.MX8MP and i.MX9.
Dump as below:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
Mem abort info:
ESR = 0x0000000096000004
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x04: level 0 translation fault
Data abort info:
ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
CM = 0, WnR = 0, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
user pgtable: 4k pages, 48-bit VAs, pgdp=000000010af63000
[0000000000000000] pgd=0000000000000000, p4d=0000000000000000
Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP
Modules linked in:
CPU: 2 UID: 0 PID: 1060 Comm: sh Not tainted 6.14.0-rc7-next-20250317-dirty #38
Hardware name: NXP i.MX8MPlus EVK board (DT)
pstate: a0000005 (NzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __pi_memcpy_generic+0x110/0x22c
lr : rproc_start+0x88/0x1e0
Call trace:
__pi_memcpy_generic+0x110/0x22c (P)
rproc_boot+0x198/0x57c
state_store+0x40/0x104
dev_attr_store+0x18/0x2c
sysfs_kf_write+0x7c/0x94
kernfs_fop_write_iter+0x120/0x1cc
vfs_write+0x240/0x378
ksys_write+0x70/0x108
__arm64_sys_write+0x1c/0x28
invoke_syscall+0x48/0x10c
el0_svc_common.constprop.0+0xc0/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x30/0xcc
el0t_64_sync_handler+0x10c/0x138
el0t_64_sync+0x198/0x19c
Clear rproc->table_sz to address the issue.
In the Linux kernel, the following vulnerability has been resolved:
drm/mediatek: dp: drm_err => dev_err in HPD path to avoid NULL ptr
The function mtk_dp_wait_hpd_asserted() may be called before the
`mtk_dp->drm_dev` pointer is assigned in mtk_dp_bridge_attach().
Specifically it can be called via this callpath:
- mtk_edp_wait_hpd_asserted
- [panel probe]
- dp_aux_ep_probe
Using "drm" level prints anywhere in this callpath causes a NULL
pointer dereference. Change the error message directly in
mtk_dp_wait_hpd_asserted() to dev_err() to avoid this. Also change the
error messages in mtk_dp_parse_capabilities(), which is called by
mtk_dp_wait_hpd_asserted().
While touching these prints, also add the error code to them to make
future debugging easier.
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: fsl-edma: free irq correctly in remove path
Add fsl_edma->txirq/errirq check to avoid below warning because no
errirq at i.MX9 platform. Otherwise there will be kernel dump:
WARNING: CPU: 0 PID: 11 at kernel/irq/devres.c:144 devm_free_irq+0x74/0x80
Modules linked in:
CPU: 0 UID: 0 PID: 11 Comm: kworker/u8:0 Not tainted 6.12.0-rc7#18
Hardware name: NXP i.MX93 11X11 EVK board (DT)
Workqueue: events_unbound deferred_probe_work_func
pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : devm_free_irq+0x74/0x80
lr : devm_free_irq+0x48/0x80
Call trace:
devm_free_irq+0x74/0x80 (P)
devm_free_irq+0x48/0x80 (L)
fsl_edma_remove+0xc4/0xc8
platform_remove+0x28/0x44
device_remove+0x4c/0x80
In the Linux kernel, the following vulnerability has been resolved:
net_sched: skbprio: Remove overly strict queue assertions
In the current implementation, skbprio enqueue/dequeue contains an assertion
that fails under certain conditions when SKBPRIO is used as a child qdisc under
TBF with specific parameters. The failure occurs because TBF sometimes peeks at
packets in the child qdisc without actually dequeuing them when tokens are
unavailable.
This peek operation creates a discrepancy between the parent and child qdisc
queue length counters. When TBF later receives a high-priority packet,
SKBPRIO's queue length may show a different value than what's reflected in its
internal priority queue tracking, triggering the assertion.
The fix removes this overly strict assertions in SKBPRIO, they are not
necessary at all.
In the Linux kernel, the following vulnerability has been resolved:
nfsd: allow SC_STATUS_FREEABLE when searching via nfs4_lookup_stateid()
The pynfs DELEG8 test fails when run against nfsd. It acquires a
delegation and then lets the lease time out. It then tries to use the
deleg stateid and expects to see NFS4ERR_DELEG_REVOKED, but it gets
bad NFS4ERR_BAD_STATEID instead.
When a delegation is revoked, it's initially marked with
SC_STATUS_REVOKED, or SC_STATUS_ADMIN_REVOKED and later, it's marked
with the SC_STATUS_FREEABLE flag, which denotes that it is waiting for
s FREE_STATEID call.
nfs4_lookup_stateid() accepts a statusmask that includes the status
flags that a found stateid is allowed to have. Currently, that mask
never includes SC_STATUS_FREEABLE, which means that revoked delegations
are (almost) never found.
Add SC_STATUS_FREEABLE to the always-allowed status flags, and remove it
from nfsd4_delegreturn() since it's now always implied.
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix OOB read when checking dotdot dir
Mounting a corrupted filesystem with directory which contains '.' dir
entry with rec_len == block size results in out-of-bounds read (later
on, when the corrupted directory is removed).
ext4_empty_dir() assumes every ext4 directory contains at least '.'
and '..' as directory entries in the first data block. It first loads
the '.' dir entry, performs sanity checks by calling ext4_check_dir_entry()
and then uses its rec_len member to compute the location of '..' dir
entry (in ext4_next_entry). It assumes the '..' dir entry fits into the
same data block.
If the rec_len of '.' is precisely one block (4KB), it slips through the
sanity checks (it is considered the last directory entry in the data
block) and leaves "struct ext4_dir_entry_2 *de" point exactly past the
memory slot allocated to the data block. The following call to
ext4_check_dir_entry() on new value of de then dereferences this pointer
which results in out-of-bounds mem access.
Fix this by extending __ext4_check_dir_entry() to check for '.' dir
entries that reach the end of data block. Make sure to ignore the phony
dir entries for checksum (by checking name_len for non-zero).
Note: This is reported by KASAN as use-after-free in case another
structure was recently freed from the slot past the bound, but it is
really an OOB read.
This issue was found by syzkaller tool.
Call Trace:
[ 38.594108] BUG: KASAN: slab-use-after-free in __ext4_check_dir_entry+0x67e/0x710
[ 38.594649] Read of size 2 at addr ffff88802b41a004 by task syz-executor/5375
[ 38.595158]
[ 38.595288] CPU: 0 UID: 0 PID: 5375 Comm: syz-executor Not tainted 6.14.0-rc7 #1
[ 38.595298] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014
[ 38.595304] Call Trace:
[ 38.595308] <TASK>
[ 38.595311] dump_stack_lvl+0xa7/0xd0
[ 38.595325] print_address_description.constprop.0+0x2c/0x3f0
[ 38.595339] ? __ext4_check_dir_entry+0x67e/0x710
[ 38.595349] print_report+0xaa/0x250
[ 38.595359] ? __ext4_check_dir_entry+0x67e/0x710
[ 38.595368] ? kasan_addr_to_slab+0x9/0x90
[ 38.595378] kasan_report+0xab/0xe0
[ 38.595389] ? __ext4_check_dir_entry+0x67e/0x710
[ 38.595400] __ext4_check_dir_entry+0x67e/0x710
[ 38.595410] ext4_empty_dir+0x465/0x990
[ 38.595421] ? __pfx_ext4_empty_dir+0x10/0x10
[ 38.595432] ext4_rmdir.part.0+0x29a/0xd10
[ 38.595441] ? __dquot_initialize+0x2a7/0xbf0
[ 38.595455] ? __pfx_ext4_rmdir.part.0+0x10/0x10
[ 38.595464] ? __pfx___dquot_initialize+0x10/0x10
[ 38.595478] ? down_write+0xdb/0x140
[ 38.595487] ? __pfx_down_write+0x10/0x10
[ 38.595497] ext4_rmdir+0xee/0x140
[ 38.595506] vfs_rmdir+0x209/0x670
[ 38.595517] ? lookup_one_qstr_excl+0x3b/0x190
[ 38.595529] do_rmdir+0x363/0x3c0
[ 38.595537] ? __pfx_do_rmdir+0x10/0x10
[ 38.595544] ? strncpy_from_user+0x1ff/0x2e0
[ 38.595561] __x64_sys_unlinkat+0xf0/0x130
[ 38.595570] do_syscall_64+0x5b/0x180
[ 38.595583] entry_SYSCALL_64_after_hwframe+0x76/0x7e