Security Vulnerabilities
- CVEs Published In April 2025
A vulnerability has been found in D-Link DWR-M961 1.1.36 and classified as critical. This vulnerability affects unknown code of the file /boafrm/formStaticDHCP of the component Authorization Interface. The manipulation of the argument Hostname leads to stack-based buffer overflow. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used. Upgrading to version 1.1.49 is able to address this issue. It is recommended to upgrade the affected component.
A vulnerability was found in Tenda AC15 up to 15.03.05.19 and classified as critical. This issue affects the function fromSetWirelessRepeat of the file /goform/WifiExtraSet. The manipulation of the argument mac leads to buffer overflow. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used.
In the Linux kernel, the following vulnerability has been resolved:
clk: samsung: Fix UBSAN panic in samsung_clk_init()
With UBSAN_ARRAY_BOUNDS=y, I'm hitting the below panic due to
dereferencing `ctx->clk_data.hws` before setting
`ctx->clk_data.num = nr_clks`. Move that up to fix the crash.
UBSAN: array index out of bounds: 00000000f2005512 [#1] PREEMPT SMP
<snip>
Call trace:
samsung_clk_init+0x110/0x124 (P)
samsung_clk_init+0x48/0x124 (L)
samsung_cmu_register_one+0x3c/0xa0
exynos_arm64_register_cmu+0x54/0x64
__gs101_cmu_top_of_clk_init_declare+0x28/0x60
...
In the Linux kernel, the following vulnerability has been resolved:
jfs: fix slab-out-of-bounds read in ea_get()
During the "size_check" label in ea_get(), the code checks if the extended
attribute list (xattr) size matches ea_size. If not, it logs
"ea_get: invalid extended attribute" and calls print_hex_dump().
Here, EALIST_SIZE(ea_buf->xattr) returns 4110417968, which exceeds
INT_MAX (2,147,483,647). Then ea_size is clamped:
int size = clamp_t(int, ea_size, 0, EALIST_SIZE(ea_buf->xattr));
Although clamp_t aims to bound ea_size between 0 and 4110417968, the upper
limit is treated as an int, causing an overflow above 2^31 - 1. This leads
"size" to wrap around and become negative (-184549328).
The "size" is then passed to print_hex_dump() (called "len" in
print_hex_dump()), it is passed as type size_t (an unsigned
type), this is then stored inside a variable called
"int remaining", which is then assigned to "int linelen" which
is then passed to hex_dump_to_buffer(). In print_hex_dump()
the for loop, iterates through 0 to len-1, where len is
18446744073525002176, calling hex_dump_to_buffer()
on each iteration:
for (i = 0; i < len; i += rowsize) {
linelen = min(remaining, rowsize);
remaining -= rowsize;
hex_dump_to_buffer(ptr + i, linelen, rowsize, groupsize,
linebuf, sizeof(linebuf), ascii);
...
}
The expected stopping condition (i < len) is effectively broken
since len is corrupted and very large. This eventually leads to
the "ptr+i" being passed to hex_dump_to_buffer() to get closer
to the end of the actual bounds of "ptr", eventually an out of
bounds access is done in hex_dump_to_buffer() in the following
for loop:
for (j = 0; j < len; j++) {
if (linebuflen < lx + 2)
goto overflow2;
ch = ptr[j];
...
}
To fix this we should validate "EALIST_SIZE(ea_buf->xattr)"
before it is utilised.
In the Linux kernel, the following vulnerability has been resolved:
staging: gpib: Fix cb7210 pcmcia Oops
The pcmcia_driver struct was still only using the old .name
initialization in the drv field. This led to a NULL pointer
deref Oops in strcmp called from pcmcia_register_driver.
Initialize the pcmcia_driver struct name field.
In the Linux kernel, the following vulnerability has been resolved:
objtool, nvmet: Fix out-of-bounds stack access in nvmet_ctrl_state_show()
The csts_state_names[] array only has six sparse entries, but the
iteration code in nvmet_ctrl_state_show() iterates seven, resulting in a
potential out-of-bounds stack read. Fix that.
Fixes the following warning with an UBSAN kernel:
vmlinux.o: warning: objtool: .text.nvmet_ctrl_state_show: unexpected end of section
In the Linux kernel, the following vulnerability has been resolved:
ASoC: simple-card-utils: Don't use __free(device_node) at graph_util_parse_dai()
commit 419d1918105e ("ASoC: simple-card-utils: use __free(device_node) for
device node") uses __free(device_node) for dlc->of_node, but we need to
keep it while driver is in use.
Don't use __free(device_node) in graph_util_parse_dai().
In the Linux kernel, the following vulnerability has been resolved:
x86/mce: use is_copy_from_user() to determine copy-from-user context
Patch series "mm/hwpoison: Fix regressions in memory failure handling",
v4.
## 1. What am I trying to do:
This patchset resolves two critical regressions related to memory failure
handling that have appeared in the upstream kernel since version 5.17, as
compared to 5.10 LTS.
- copyin case: poison found in user page while kernel copying from user space
- instr case: poison found while instruction fetching in user space
## 2. What is the expected outcome and why
- For copyin case:
Kernel can recover from poison found where kernel is doing get_user() or
copy_from_user() if those places get an error return and the kernel return
-EFAULT to the process instead of crashing. More specifily, MCE handler
checks the fixup handler type to decide whether an in kernel #MC can be
recovered. When EX_TYPE_UACCESS is found, the PC jumps to recovery code
specified in _ASM_EXTABLE_FAULT() and return a -EFAULT to user space.
- For instr case:
If a poison found while instruction fetching in user space, full recovery
is possible. User process takes #PF, Linux allocates a new page and fills
by reading from storage.
## 3. What actually happens and why
- For copyin case: kernel panic since v5.17
Commit 4c132d1d844a ("x86/futex: Remove .fixup usage") introduced a new
extable fixup type, EX_TYPE_EFAULT_REG, and later patches updated the
extable fixup type for copy-from-user operations, changing it from
EX_TYPE_UACCESS to EX_TYPE_EFAULT_REG. It breaks previous EX_TYPE_UACCESS
handling when posion found in get_user() or copy_from_user().
- For instr case: user process is killed by a SIGBUS signal due to #CMCI
and #MCE race
When an uncorrected memory error is consumed there is a race between the
CMCI from the memory controller reporting an uncorrected error with a UCNA
signature, and the core reporting and SRAR signature machine check when
the data is about to be consumed.
### Background: why *UN*corrected errors tied to *C*MCI in Intel platform [1]
Prior to Icelake memory controllers reported patrol scrub events that
detected a previously unseen uncorrected error in memory by signaling a
broadcast machine check with an SRAO (Software Recoverable Action
Optional) signature in the machine check bank. This was overkill because
it's not an urgent problem that no core is on the verge of consuming that
bad data. It's also found that multi SRAO UCE may cause nested MCE
interrupts and finally become an IERR.
Hence, Intel downgrades the machine check bank signature of patrol scrub
from SRAO to UCNA (Uncorrected, No Action required), and signal changed to
#CMCI. Just to add to the confusion, Linux does take an action (in
uc_decode_notifier()) to try to offline the page despite the UC*NA*
signature name.
### Background: why #CMCI and #MCE race when poison is consuming in
Intel platform [1]
Having decided that CMCI/UCNA is the best action for patrol scrub errors,
the memory controller uses it for reads too. But the memory controller is
executing asynchronously from the core, and can't tell the difference
between a "real" read and a speculative read. So it will do CMCI/UCNA if
an error is found in any read.
Thus:
1) Core is clever and thinks address A is needed soon, issues a
speculative read.
2) Core finds it is going to use address A soon after sending the read
request
3) The CMCI from the memory controller is in a race with MCE from the
core that will soon try to retire the load from address A.
Quite often (because speculation has got better) the CMCI from the memory
controller is delivered before the core is committed to the instruction
reading address A, so the interrupt is taken, and Linux offlines the page
(marking it as poison).
## Why user process is killed for instr case
Commit 046545a661af ("mm/hwpoison: fix error page recovered but reported
"not
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
objtool, spi: amd: Fix out-of-bounds stack access in amd_set_spi_freq()
If speed_hz < AMD_SPI_MIN_HZ, amd_set_spi_freq() iterates over the
entire amd_spi_freq array without breaking out early, causing 'i' to go
beyond the array bounds.
Fix that by stopping the loop when it gets to the last entry, so the low
speed_hz value gets clamped up to AMD_SPI_MIN_HZ.
Fixes the following warning with an UBSAN kernel:
drivers/spi/spi-amd.o: error: objtool: amd_set_spi_freq() falls through to next function amd_spi_set_opcode()
In the Linux kernel, the following vulnerability has been resolved:
iio: light: Add check for array bounds in veml6075_read_int_time_ms
The array contains only 5 elements, but the index calculated by
veml6075_read_int_time_index can range from 0 to 7,
which could lead to out-of-bounds access. The check prevents this issue.
Coverity Issue
CID 1574309: (#1 of 1): Out-of-bounds read (OVERRUN)
overrun-local: Overrunning array veml6075_it_ms of 5 4-byte
elements at element index 7 (byte offset 31) using
index int_index (which evaluates to 7)
This is hardening against potentially broken hardware. Good to have
but not necessary to backport.