Security Vulnerabilities
- CVEs Published In April 2024
In the Linux kernel, the following vulnerability has been resolved:
ARM: ep93xx: Add terminator to gpiod_lookup_table
Without the terminator, if a con_id is passed to gpio_find() that
does not exist in the lookup table the function will not stop looping
correctly, and eventually cause an oops.
In the Linux kernel, the following vulnerability has been resolved:
l2tp: pass correct message length to ip6_append_data
l2tp_ip6_sendmsg needs to avoid accounting for the transport header
twice when splicing more data into an already partially-occupied skbuff.
To manage this, we check whether the skbuff contains data using
skb_queue_empty when deciding how much data to append using
ip6_append_data.
However, the code which performed the calculation was incorrect:
ulen = len + skb_queue_empty(&sk->sk_write_queue) ? transhdrlen : 0;
...due to C operator precedence, this ends up setting ulen to
transhdrlen for messages with a non-zero length, which results in
corrupted packets on the wire.
Add parentheses to correct the calculation in line with the original
intent.
In the Linux kernel, the following vulnerability has been resolved:
crypto: virtio/akcipher - Fix stack overflow on memcpy
sizeof(struct virtio_crypto_akcipher_session_para) is less than
sizeof(struct virtio_crypto_op_ctrl_req::u), copying more bytes from
stack variable leads stack overflow. Clang reports this issue by
commands:
make -j CC=clang-14 mrproper >/dev/null 2>&1
make -j O=/tmp/crypto-build CC=clang-14 allmodconfig >/dev/null 2>&1
make -j O=/tmp/crypto-build W=1 CC=clang-14 drivers/crypto/virtio/
virtio_crypto_akcipher_algs.o
A vulnerability in the web-based management interface of Cisco Identity Services Engine (ISE) could allow an unauthenticated, remote attacker to conduct a cross-site request forgery (CSRF) attack and perform arbitrary actions on an affected device.
This vulnerability is due to insufficient CSRF protections for the web-based management interface of an affected device. An attacker could exploit this vulnerability by persuading a user of the interface to follow a crafted link. A successful exploit could allow the attacker to perform arbitrary actions on the affected device with the privileges of the targeted user.
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: fix null-pointer dereference on edid reading
Use i2c adapter when there isn't aux_mode in dc_link to fix a
null-pointer derefence that happens when running
igt@kms_force_connector_basic in a system with DCN2.1 and HDMI connector
detected as below:
[ +0.178146] BUG: kernel NULL pointer dereference, address: 00000000000004c0
[ +0.000010] #PF: supervisor read access in kernel mode
[ +0.000005] #PF: error_code(0x0000) - not-present page
[ +0.000004] PGD 0 P4D 0
[ +0.000006] Oops: 0000 [#1] PREEMPT SMP NOPTI
[ +0.000006] CPU: 15 PID: 2368 Comm: kms_force_conne Not tainted 6.5.0-asdn+ #152
[ +0.000005] Hardware name: HP HP ENVY x360 Convertible 13-ay1xxx/8929, BIOS F.01 07/14/2021
[ +0.000004] RIP: 0010:i2c_transfer+0xd/0x100
[ +0.000011] Code: ea fc ff ff 66 0f 1f 84 00 00 00 00 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 0f 1f 44 00 00 41 54 55 53 <48> 8b 47 10 48 89 fb 48 83 38 00 0f 84 b3 00 00 00 83 3d 2f 80 16
[ +0.000004] RSP: 0018:ffff9c4f89c0fad0 EFLAGS: 00010246
[ +0.000005] RAX: 0000000000000000 RBX: 0000000000000005 RCX: 0000000000000080
[ +0.000003] RDX: 0000000000000002 RSI: ffff9c4f89c0fb20 RDI: 00000000000004b0
[ +0.000003] RBP: ffff9c4f89c0fb80 R08: 0000000000000080 R09: ffff8d8e0b15b980
[ +0.000003] R10: 00000000000380e0 R11: 0000000000000000 R12: 0000000000000080
[ +0.000002] R13: 0000000000000002 R14: ffff9c4f89c0fb0e R15: ffff9c4f89c0fb0f
[ +0.000004] FS: 00007f9ad2176c40(0000) GS:ffff8d90fe9c0000(0000) knlGS:0000000000000000
[ +0.000003] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ +0.000004] CR2: 00000000000004c0 CR3: 0000000121bc4000 CR4: 0000000000750ee0
[ +0.000003] PKRU: 55555554
[ +0.000003] Call Trace:
[ +0.000006] <TASK>
[ +0.000006] ? __die+0x23/0x70
[ +0.000011] ? page_fault_oops+0x17d/0x4c0
[ +0.000008] ? preempt_count_add+0x6e/0xa0
[ +0.000008] ? srso_alias_return_thunk+0x5/0x7f
[ +0.000011] ? exc_page_fault+0x7f/0x180
[ +0.000009] ? asm_exc_page_fault+0x26/0x30
[ +0.000013] ? i2c_transfer+0xd/0x100
[ +0.000010] drm_do_probe_ddc_edid+0xc2/0x140 [drm]
[ +0.000067] ? srso_alias_return_thunk+0x5/0x7f
[ +0.000006] ? _drm_do_get_edid+0x97/0x3c0 [drm]
[ +0.000043] ? __pfx_drm_do_probe_ddc_edid+0x10/0x10 [drm]
[ +0.000042] edid_block_read+0x3b/0xd0 [drm]
[ +0.000043] _drm_do_get_edid+0xb6/0x3c0 [drm]
[ +0.000041] ? __pfx_drm_do_probe_ddc_edid+0x10/0x10 [drm]
[ +0.000043] drm_edid_read_custom+0x37/0xd0 [drm]
[ +0.000044] amdgpu_dm_connector_mode_valid+0x129/0x1d0 [amdgpu]
[ +0.000153] drm_connector_mode_valid+0x3b/0x60 [drm_kms_helper]
[ +0.000000] __drm_helper_update_and_validate+0xfe/0x3c0 [drm_kms_helper]
[ +0.000000] ? amdgpu_dm_connector_get_modes+0xb6/0x520 [amdgpu]
[ +0.000000] ? srso_alias_return_thunk+0x5/0x7f
[ +0.000000] drm_helper_probe_single_connector_modes+0x2ab/0x540 [drm_kms_helper]
[ +0.000000] status_store+0xb2/0x1f0 [drm]
[ +0.000000] kernfs_fop_write_iter+0x136/0x1d0
[ +0.000000] vfs_write+0x24d/0x440
[ +0.000000] ksys_write+0x6f/0xf0
[ +0.000000] do_syscall_64+0x60/0xc0
[ +0.000000] ? srso_alias_return_thunk+0x5/0x7f
[ +0.000000] ? syscall_exit_to_user_mode+0x2b/0x40
[ +0.000000] ? srso_alias_return_thunk+0x5/0x7f
[ +0.000000] ? do_syscall_64+0x6c/0xc0
[ +0.000000] ? do_syscall_64+0x6c/0xc0
[ +0.000000] entry_SYSCALL_64_after_hwframe+0x6e/0xd8
[ +0.000000] RIP: 0033:0x7f9ad46b4b00
[ +0.000000] Code: 40 00 48 8b 15 19 b3 0d 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 80 3d e1 3a 0e 00 00 74 17 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 58 c3 0f 1f 80 00 00 00 00 48 83 ec 28 48 89
[ +0.000000] RSP: 002b:00007ffcbd3bd6d8 EFLAGS: 00000202 ORIG_RAX: 0000000000000001
[ +0.000000] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f9ad46b4b00
[ +0.000000] RDX: 0000000000000002 RSI: 00007f9ad48a7417 RDI: 0000000000000009
[ +0.000000] RBP: 0000000000000002 R08
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix potential null pointer dereference in dc_dmub_srv
Fixes potential null pointer dereference warnings in the
dc_dmub_srv_cmd_list_queue_execute() and dc_dmub_srv_is_hw_pwr_up()
functions.
In both functions, the 'dc_dmub_srv' variable was being dereferenced
before it was checked for null. This could lead to a null pointer
dereference if 'dc_dmub_srv' is null. The fix is to check if
'dc_dmub_srv' is null before dereferencing it.
Thus moving the null checks for 'dc_dmub_srv' to the beginning of the
functions to ensure that 'dc_dmub_srv' is not null when it is
dereferenced.
Found by smatch & thus fixing the below:
drivers/gpu/drm/amd/amdgpu/../display/dc/dc_dmub_srv.c:133 dc_dmub_srv_cmd_list_queue_execute() warn: variable dereferenced before check 'dc_dmub_srv' (see line 128)
drivers/gpu/drm/amd/amdgpu/../display/dc/dc_dmub_srv.c:1167 dc_dmub_srv_is_hw_pwr_up() warn: variable dereferenced before check 'dc_dmub_srv' (see line 1164)
In the Linux kernel, the following vulnerability has been resolved:
hwmon: (nct6775) Fix access to temperature configuration registers
The number of temperature configuration registers does
not always match the total number of temperature registers.
This can result in access errors reported if KASAN is enabled.
BUG: KASAN: global-out-of-bounds in nct6775_probe+0x5654/0x6fe9 nct6775_core
In the Linux kernel, the following vulnerability has been resolved:
bpf, sockmap: Fix NULL pointer dereference in sk_psock_verdict_data_ready()
syzbot reported the following NULL pointer dereference issue [1]:
BUG: kernel NULL pointer dereference, address: 0000000000000000
[...]
RIP: 0010:0x0
[...]
Call Trace:
<TASK>
sk_psock_verdict_data_ready+0x232/0x340 net/core/skmsg.c:1230
unix_stream_sendmsg+0x9b4/0x1230 net/unix/af_unix.c:2293
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x221/0x270 net/socket.c:745
____sys_sendmsg+0x525/0x7d0 net/socket.c:2584
___sys_sendmsg net/socket.c:2638 [inline]
__sys_sendmsg+0x2b0/0x3a0 net/socket.c:2667
do_syscall_64+0xf9/0x240
entry_SYSCALL_64_after_hwframe+0x6f/0x77
If sk_psock_verdict_data_ready() and sk_psock_stop_verdict() are called
concurrently, psock->saved_data_ready can be NULL, causing the above issue.
This patch fixes this issue by calling the appropriate data ready function
using the sk_psock_data_ready() helper and protecting it from concurrency
with sk->sk_callback_lock.
In the Linux kernel, the following vulnerability has been resolved:
net: implement lockless setsockopt(SO_PEEK_OFF)
syzbot reported a lockdep violation [1] involving af_unix
support of SO_PEEK_OFF.
Since SO_PEEK_OFF is inherently not thread safe (it uses a per-socket
sk_peek_off field), there is really no point to enforce a pointless
thread safety in the kernel.
After this patch :
- setsockopt(SO_PEEK_OFF) no longer acquires the socket lock.
- skb_consume_udp() no longer has to acquire the socket lock.
- af_unix no longer needs a special version of sk_set_peek_off(),
because it does not lock u->iolock anymore.
As a followup, we could replace prot->set_peek_off to be a boolean
and avoid an indirect call, since we always use sk_set_peek_off().
[1]
WARNING: possible circular locking dependency detected
6.8.0-rc4-syzkaller-00267-g0f1dd5e91e2b #0 Not tainted
syz-executor.2/30025 is trying to acquire lock:
ffff8880765e7d80 (&u->iolock){+.+.}-{3:3}, at: unix_set_peek_off+0x26/0xa0 net/unix/af_unix.c:789
but task is already holding lock:
ffff8880765e7930 (sk_lock-AF_UNIX){+.+.}-{0:0}, at: lock_sock include/net/sock.h:1691 [inline]
ffff8880765e7930 (sk_lock-AF_UNIX){+.+.}-{0:0}, at: sockopt_lock_sock net/core/sock.c:1060 [inline]
ffff8880765e7930 (sk_lock-AF_UNIX){+.+.}-{0:0}, at: sk_setsockopt+0xe52/0x3360 net/core/sock.c:1193
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (sk_lock-AF_UNIX){+.+.}-{0:0}:
lock_acquire+0x1e3/0x530 kernel/locking/lockdep.c:5754
lock_sock_nested+0x48/0x100 net/core/sock.c:3524
lock_sock include/net/sock.h:1691 [inline]
__unix_dgram_recvmsg+0x1275/0x12c0 net/unix/af_unix.c:2415
sock_recvmsg_nosec+0x18e/0x1d0 net/socket.c:1046
____sys_recvmsg+0x3c0/0x470 net/socket.c:2801
___sys_recvmsg net/socket.c:2845 [inline]
do_recvmmsg+0x474/0xae0 net/socket.c:2939
__sys_recvmmsg net/socket.c:3018 [inline]
__do_sys_recvmmsg net/socket.c:3041 [inline]
__se_sys_recvmmsg net/socket.c:3034 [inline]
__x64_sys_recvmmsg+0x199/0x250 net/socket.c:3034
do_syscall_64+0xf9/0x240
entry_SYSCALL_64_after_hwframe+0x6f/0x77
-> #0 (&u->iolock){+.+.}-{3:3}:
check_prev_add kernel/locking/lockdep.c:3134 [inline]
check_prevs_add kernel/locking/lockdep.c:3253 [inline]
validate_chain+0x18ca/0x58e0 kernel/locking/lockdep.c:3869
__lock_acquire+0x1345/0x1fd0 kernel/locking/lockdep.c:5137
lock_acquire+0x1e3/0x530 kernel/locking/lockdep.c:5754
__mutex_lock_common kernel/locking/mutex.c:608 [inline]
__mutex_lock+0x136/0xd70 kernel/locking/mutex.c:752
unix_set_peek_off+0x26/0xa0 net/unix/af_unix.c:789
sk_setsockopt+0x207e/0x3360
do_sock_setsockopt+0x2fb/0x720 net/socket.c:2307
__sys_setsockopt+0x1ad/0x250 net/socket.c:2334
__do_sys_setsockopt net/socket.c:2343 [inline]
__se_sys_setsockopt net/socket.c:2340 [inline]
__x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340
do_syscall_64+0xf9/0x240
entry_SYSCALL_64_after_hwframe+0x6f/0x77
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(sk_lock-AF_UNIX);
lock(&u->iolock);
lock(sk_lock-AF_UNIX);
lock(&u->iolock);
*** DEADLOCK ***
1 lock held by syz-executor.2/30025:
#0: ffff8880765e7930 (sk_lock-AF_UNIX){+.+.}-{0:0}, at: lock_sock include/net/sock.h:1691 [inline]
#0: ffff8880765e7930 (sk_lock-AF_UNIX){+.+.}-{0:0}, at: sockopt_lock_sock net/core/sock.c:1060 [inline]
#0: ffff8880765e7930 (sk_lock-AF_UNIX){+.+.}-{0:0}, at: sk_setsockopt+0xe52/0x3360 net/core/sock.c:1193
stack backtrace:
CPU: 0 PID: 30025 Comm: syz-executor.2 Not tainted 6.8.0-rc4-syzkaller-00267-g0f1dd5e91e2b #0
Hardware name: Google Google C
---truncated---
A vulnerability in Cisco Emergency Responder could allow an unauthenticated, remote attacker to conduct a CSRF attack, which could allow the attacker to perform arbitrary actions on an affected device. This vulnerability is due to insufficient protections for the web UI of an affected system. An attacker could exploit this vulnerability by persuading a user to click a crafted link. A successful exploit could allow the attacker to perform arbitrary actions with the privilege level of the affected user, such as deleting users from the device.