Security Vulnerabilities
- CVEs Published In April 2024
In the Linux kernel, the following vulnerability has been resolved:
md: Don't ignore read-only array in md_check_recovery()
Usually if the array is not read-write, md_check_recovery() won't
register new sync_thread in the first place. And if the array is
read-write and sync_thread is registered, md_set_readonly() will
unregister sync_thread before setting the array read-only. md/raid
follow this behavior hence there is no problem.
After commit f52f5c71f3d4 ("md: fix stopping sync thread"), following
hang can be triggered by test shell/integrity-caching.sh:
1) array is read-only. dm-raid update super block:
rs_update_sbs
ro = mddev->ro
mddev->ro = 0
-> set array read-write
md_update_sb
2) register new sync thread concurrently.
3) dm-raid set array back to read-only:
rs_update_sbs
mddev->ro = ro
4) stop the array:
raid_dtr
md_stop
stop_sync_thread
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
md_wakeup_thread_directly(mddev->sync_thread);
wait_event(..., !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5) sync thread done:
md_do_sync
set_bit(MD_RECOVERY_DONE, &mddev->recovery);
md_wakeup_thread(mddev->thread);
6) daemon thread can't unregister sync thread:
md_check_recovery
if (!md_is_rdwr(mddev) &&
!test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
return;
-> -> MD_RECOVERY_RUNNING can't be cleared, hence step 4 hang;
The root cause is that dm-raid manipulate 'mddev->ro' by itself,
however, dm-raid really should stop sync thread before setting the
array read-only. Unfortunately, I need to read more code before I
can refacter the handler of 'mddev->ro' in dm-raid, hence let's fix
the problem the easy way for now to prevent dm-raid regression.
In the Linux kernel, the following vulnerability has been resolved:
md: Don't ignore suspended array in md_check_recovery()
mddev_suspend() never stop sync_thread, hence it doesn't make sense to
ignore suspended array in md_check_recovery(), which might cause
sync_thread can't be unregistered.
After commit f52f5c71f3d4 ("md: fix stopping sync thread"), following
hang can be triggered by test shell/integrity-caching.sh:
1) suspend the array:
raid_postsuspend
mddev_suspend
2) stop the array:
raid_dtr
md_stop
__md_stop_writes
stop_sync_thread
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
md_wakeup_thread_directly(mddev->sync_thread);
wait_event(..., !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3) sync thread done:
md_do_sync
set_bit(MD_RECOVERY_DONE, &mddev->recovery);
md_wakeup_thread(mddev->thread);
4) daemon thread can't unregister sync thread:
md_check_recovery
if (mddev->suspended)
return; -> return directly
md_read_sync_thread
clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
-> MD_RECOVERY_RUNNING can't be cleared, hence step 2 hang;
This problem is not just related to dm-raid, fix it by ignoring
suspended array in md_check_recovery(). And follow up patches will
improve dm-raid better to frozen sync thread during suspend.
In the Linux kernel, the following vulnerability has been resolved:
mm/swap: fix race when skipping swapcache
When skipping swapcache for SWP_SYNCHRONOUS_IO, if two or more threads
swapin the same entry at the same time, they get different pages (A, B).
Before one thread (T0) finishes the swapin and installs page (A) to the
PTE, another thread (T1) could finish swapin of page (B), swap_free the
entry, then swap out the possibly modified page reusing the same entry.
It breaks the pte_same check in (T0) because PTE value is unchanged,
causing ABA problem. Thread (T0) will install a stalled page (A) into the
PTE and cause data corruption.
One possible callstack is like this:
CPU0 CPU1
---- ----
do_swap_page() do_swap_page() with same entry
<direct swapin path> <direct swapin path>
<alloc page A> <alloc page B>
swap_read_folio() <- read to page A swap_read_folio() <- read to page B
<slow on later locks or interrupt> <finished swapin first>
... set_pte_at()
swap_free() <- entry is free
<write to page B, now page A stalled>
<swap out page B to same swap entry>
pte_same() <- Check pass, PTE seems
unchanged, but page A
is stalled!
swap_free() <- page B content lost!
set_pte_at() <- staled page A installed!
And besides, for ZRAM, swap_free() allows the swap device to discard the
entry content, so even if page (B) is not modified, if swap_read_folio()
on CPU0 happens later than swap_free() on CPU1, it may also cause data
loss.
To fix this, reuse swapcache_prepare which will pin the swap entry using
the cache flag, and allow only one thread to swap it in, also prevent any
parallel code from putting the entry in the cache. Release the pin after
PT unlocked.
Racers just loop and wait since it's a rare and very short event. A
schedule_timeout_uninterruptible(1) call is added to avoid repeated page
faults wasting too much CPU, causing livelock or adding too much noise to
perf statistics. A similar livelock issue was described in commit
029c4628b2eb ("mm: swap: get rid of livelock in swapin readahead")
Reproducer:
This race issue can be triggered easily using a well constructed
reproducer and patched brd (with a delay in read path) [1]:
With latest 6.8 mainline, race caused data loss can be observed easily:
$ gcc -g -lpthread test-thread-swap-race.c && ./a.out
Polulating 32MB of memory region...
Keep swapping out...
Starting round 0...
Spawning 65536 workers...
32746 workers spawned, wait for done...
Round 0: Error on 0x5aa00, expected 32746, got 32743, 3 data loss!
Round 0: Error on 0x395200, expected 32746, got 32743, 3 data loss!
Round 0: Error on 0x3fd000, expected 32746, got 32737, 9 data loss!
Round 0 Failed, 15 data loss!
This reproducer spawns multiple threads sharing the same memory region
using a small swap device. Every two threads updates mapped pages one by
one in opposite direction trying to create a race, with one dedicated
thread keep swapping out the data out using madvise.
The reproducer created a reproduce rate of about once every 5 minutes, so
the race should be totally possible in production.
After this patch, I ran the reproducer for over a few hundred rounds and
no data loss observed.
Performance overhead is minimal, microbenchmark swapin 10G from 32G
zram:
Before: 10934698 us
After: 11157121 us
Cached: 13155355 us (Dropping SWP_SYNCHRONOUS_IO flag)
[kasong@tencent.com: v4]
In the Linux kernel, the following vulnerability has been resolved:
scsi: target: pscsi: Fix bio_put() for error case
As of commit 066ff571011d ("block: turn bio_kmalloc into a simple kmalloc
wrapper"), a bio allocated by bio_kmalloc() must be freed by bio_uninit()
and kfree(). That is not done properly for the error case, hitting WARN and
NULL pointer dereference in bio_free().
In the Linux kernel, the following vulnerability has been resolved:
cxl/pci: Fix disabling memory if DVSEC CXL Range does not match a CFMWS window
The Linux CXL subsystem is built on the assumption that HPA == SPA.
That is, the host physical address (HPA) the HDM decoder registers are
programmed with are system physical addresses (SPA).
During HDM decoder setup, the DVSEC CXL range registers (cxl-3.1,
8.1.3.8) are checked if the memory is enabled and the CXL range is in
a HPA window that is described in a CFMWS structure of the CXL host
bridge (cxl-3.1, 9.18.1.3).
Now, if the HPA is not an SPA, the CXL range does not match a CFMWS
window and the CXL memory range will be disabled then. The HDM decoder
stops working which causes system memory being disabled and further a
system hang during HDM decoder initialization, typically when a CXL
enabled kernel boots.
Prevent a system hang and do not disable the HDM decoder if the
decoder's CXL range is not found in a CFMWS window.
Note the change only fixes a hardware hang, but does not implement
HPA/SPA translation. Support for this can be added in a follow on
patch series.
In the Linux kernel, the following vulnerability has been resolved:
cxl/pci: Skip to handle RAS errors if CXL.mem device is detached
The PCI AER model is an awkward fit for CXL error handling. While the
expectation is that a PCI device can escalate to link reset to recover
from an AER event, the same reset on CXL amounts to a surprise memory
hotplug of massive amounts of memory.
At present, the CXL error handler attempts some optimistic error
handling to unbind the device from the cxl_mem driver after reaping some
RAS register values. This results in a "hopeful" attempt to unplug the
memory, but there is no guarantee that will succeed.
A subsequent AER notification after the memdev unbind event can no
longer assume the registers are mapped. Check for memdev bind before
reaping status register values to avoid crashes of the form:
BUG: unable to handle page fault for address: ffa00000195e9100
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
[...]
RIP: 0010:__cxl_handle_ras+0x30/0x110 [cxl_core]
[...]
Call Trace:
<TASK>
? __die+0x24/0x70
? page_fault_oops+0x82/0x160
? kernelmode_fixup_or_oops+0x84/0x110
? exc_page_fault+0x113/0x170
? asm_exc_page_fault+0x26/0x30
? __pfx_dpc_reset_link+0x10/0x10
? __cxl_handle_ras+0x30/0x110 [cxl_core]
? find_cxl_port+0x59/0x80 [cxl_core]
cxl_handle_rp_ras+0xbc/0xd0 [cxl_core]
cxl_error_detected+0x6c/0xf0 [cxl_core]
report_error_detected+0xc7/0x1c0
pci_walk_bus+0x73/0x90
pcie_do_recovery+0x23f/0x330
Longer term, the unbind and PCI_ERS_RESULT_DISCONNECT behavior might
need to be replaced with a new PCI_ERS_RESULT_PANIC.
In the Linux kernel, the following vulnerability has been resolved:
dm-crypt: don't modify the data when using authenticated encryption
It was said that authenticated encryption could produce invalid tag when
the data that is being encrypted is modified [1]. So, fix this problem by
copying the data into the clone bio first and then encrypt them inside the
clone bio.
This may reduce performance, but it is needed to prevent the user from
corrupting the device by writing data with O_DIRECT and modifying them at
the same time.
[1] https://lore.kernel.org/all/20240207004723.GA35324@sol.localdomain/T/
In the Linux kernel, the following vulnerability has been resolved:
fs/aio: Restrict kiocb_set_cancel_fn() to I/O submitted via libaio
If kiocb_set_cancel_fn() is called for I/O submitted via io_uring, the
following kernel warning appears:
WARNING: CPU: 3 PID: 368 at fs/aio.c:598 kiocb_set_cancel_fn+0x9c/0xa8
Call trace:
kiocb_set_cancel_fn+0x9c/0xa8
ffs_epfile_read_iter+0x144/0x1d0
io_read+0x19c/0x498
io_issue_sqe+0x118/0x27c
io_submit_sqes+0x25c/0x5fc
__arm64_sys_io_uring_enter+0x104/0xab0
invoke_syscall+0x58/0x11c
el0_svc_common+0xb4/0xf4
do_el0_svc+0x2c/0xb0
el0_svc+0x2c/0xa4
el0t_64_sync_handler+0x68/0xb4
el0t_64_sync+0x1a4/0x1a8
Fix this by setting the IOCB_AIO_RW flag for read and write I/O that is
submitted by libaio.
In the Linux kernel, the following vulnerability has been resolved:
LoongArch: Disable IRQ before init_fn() for nonboot CPUs
Disable IRQ before init_fn() for nonboot CPUs when hotplug, in order to
silence such warnings (and also avoid potential errors due to unexpected
interrupts):
WARNING: CPU: 1 PID: 0 at kernel/rcu/tree.c:4503 rcu_cpu_starting+0x214/0x280
CPU: 1 PID: 0 Comm: swapper/1 Not tainted 6.6.17+ #1198
pc 90000000048e3334 ra 90000000047bd56c tp 900000010039c000 sp 900000010039fdd0
a0 0000000000000001 a1 0000000000000006 a2 900000000802c040 a3 0000000000000000
a4 0000000000000001 a5 0000000000000004 a6 0000000000000000 a7 90000000048e3f4c
t0 0000000000000001 t1 9000000005c70968 t2 0000000004000000 t3 000000000005e56e
t4 00000000000002e4 t5 0000000000001000 t6 ffffffff80000000 t7 0000000000040000
t8 9000000007931638 u0 0000000000000006 s9 0000000000000004 s0 0000000000000001
s1 9000000006356ac0 s2 9000000007244000 s3 0000000000000001 s4 0000000000000001
s5 900000000636f000 s6 7fffffffffffffff s7 9000000002123940 s8 9000000001ca55f8
ra: 90000000047bd56c tlb_init+0x24c/0x528
ERA: 90000000048e3334 rcu_cpu_starting+0x214/0x280
CRMD: 000000b0 (PLV0 -IE -DA +PG DACF=CC DACM=CC -WE)
PRMD: 00000000 (PPLV0 -PIE -PWE)
EUEN: 00000000 (-FPE -SXE -ASXE -BTE)
ECFG: 00071000 (LIE=12 VS=7)
ESTAT: 000c0000 [BRK] (IS= ECode=12 EsubCode=0)
PRID: 0014c010 (Loongson-64bit, Loongson-3A5000)
CPU: 1 PID: 0 Comm: swapper/1 Not tainted 6.6.17+ #1198
Stack : 0000000000000000 9000000006375000 9000000005b61878 900000010039c000
900000010039fa30 0000000000000000 900000010039fa38 900000000619a140
9000000006456888 9000000006456880 900000010039f950 0000000000000001
0000000000000001 cb0cb028ec7e52e1 0000000002b90000 9000000100348700
0000000000000000 0000000000000001 ffffffff916d12f1 0000000000000003
0000000000040000 9000000007930370 0000000002b90000 0000000000000004
9000000006366000 900000000619a140 0000000000000000 0000000000000004
0000000000000000 0000000000000009 ffffffffffc681f2 9000000002123940
9000000001ca55f8 9000000006366000 90000000047a4828 00007ffff057ded8
00000000000000b0 0000000000000000 0000000000000000 0000000000071000
...
Call Trace:
[<90000000047a4828>] show_stack+0x48/0x1a0
[<9000000005b61874>] dump_stack_lvl+0x84/0xcc
[<90000000047f60ac>] __warn+0x8c/0x1e0
[<9000000005b0ab34>] report_bug+0x1b4/0x280
[<9000000005b63110>] do_bp+0x2d0/0x480
[<90000000047a2e20>] handle_bp+0x120/0x1c0
[<90000000048e3334>] rcu_cpu_starting+0x214/0x280
[<90000000047bd568>] tlb_init+0x248/0x528
[<90000000047a4c44>] per_cpu_trap_init+0x124/0x160
[<90000000047a19f4>] cpu_probe+0x494/0xa00
[<90000000047b551c>] start_secondary+0x3c/0xc0
[<9000000005b66134>] smpboot_entry+0x50/0x58
In the Linux kernel, the following vulnerability has been resolved:
IB/hfi1: Fix sdma.h tx->num_descs off-by-one error
Unfortunately the commit `fd8958efe877` introduced another error
causing the `descs` array to overflow. This reults in further crashes
easily reproducible by `sendmsg` system call.
[ 1080.836473] general protection fault, probably for non-canonical address 0x400300015528b00a: 0000 [#1] PREEMPT SMP PTI
[ 1080.869326] RIP: 0010:hfi1_ipoib_build_ib_tx_headers.constprop.0+0xe1/0x2b0 [hfi1]
--
[ 1080.974535] Call Trace:
[ 1080.976990] <TASK>
[ 1081.021929] hfi1_ipoib_send_dma_common+0x7a/0x2e0 [hfi1]
[ 1081.027364] hfi1_ipoib_send_dma_list+0x62/0x270 [hfi1]
[ 1081.032633] hfi1_ipoib_send+0x112/0x300 [hfi1]
[ 1081.042001] ipoib_start_xmit+0x2a9/0x2d0 [ib_ipoib]
[ 1081.046978] dev_hard_start_xmit+0xc4/0x210
--
[ 1081.148347] __sys_sendmsg+0x59/0xa0
crash> ipoib_txreq 0xffff9cfeba229f00
struct ipoib_txreq {
txreq = {
list = {
next = 0xffff9cfeba229f00,
prev = 0xffff9cfeba229f00
},
descp = 0xffff9cfeba229f40,
coalesce_buf = 0x0,
wait = 0xffff9cfea4e69a48,
complete = 0xffffffffc0fe0760 <hfi1_ipoib_sdma_complete>,
packet_len = 0x46d,
tlen = 0x0,
num_desc = 0x0,
desc_limit = 0x6,
next_descq_idx = 0x45c,
coalesce_idx = 0x0,
flags = 0x0,
descs = {{
qw = {0x8024000120dffb00, 0x4} # SDMA_DESC0_FIRST_DESC_FLAG (bit 63)
}, {
qw = { 0x3800014231b108, 0x4}
}, {
qw = { 0x310000e4ee0fcf0, 0x8}
}, {
qw = { 0x3000012e9f8000, 0x8}
}, {
qw = { 0x59000dfb9d0000, 0x8}
}, {
qw = { 0x78000e02e40000, 0x8}
}}
},
sdma_hdr = 0x400300015528b000, <<< invalid pointer in the tx request structure
sdma_status = 0x0, SDMA_DESC0_LAST_DESC_FLAG (bit 62)
complete = 0x0,
priv = 0x0,
txq = 0xffff9cfea4e69880,
skb = 0xffff9d099809f400
}
If an SDMA send consists of exactly 6 descriptors and requires dword
padding (in the 7th descriptor), the sdma_txreq descriptor array is not
properly expanded and the packet will overflow into the container
structure. This results in a panic when the send completion runs. The
exact panic varies depending on what elements of the container structure
get corrupted. The fix is to use the correct expression in
_pad_sdma_tx_descs() to test the need to expand the descriptor array.
With this patch the crashes are no longer reproducible and the machine is
stable.