Security Vulnerabilities
- CVEs Published In April 2024
In the Linux kernel, the following vulnerability has been resolved:
cfg80211: call cfg80211_stop_ap when switch from P2P_GO type
If the userspace tools switch from NL80211_IFTYPE_P2P_GO to
NL80211_IFTYPE_ADHOC via send_msg(NL80211_CMD_SET_INTERFACE), it
does not call the cleanup cfg80211_stop_ap(), this leads to the
initialization of in-use data. For example, this path re-init the
sdata->assigned_chanctx_list while it is still an element of
assigned_vifs list, and makes that linked list corrupt.
In the Linux kernel, the following vulnerability has been resolved:
spi: fix use-after-free of the add_lock mutex
Commit 6098475d4cb4 ("spi: Fix deadlock when adding SPI controllers on
SPI buses") introduced a per-controller mutex. But mutex_unlock() of
said lock is called after the controller is already freed:
spi_unregister_controller(ctlr)
-> put_device(&ctlr->dev)
-> spi_controller_release(dev)
-> mutex_unlock(&ctrl->add_lock)
Move the put_device() after the mutex_unlock().
In the Linux kernel, the following vulnerability has been resolved:
RDMA/core: Set send and receive CQ before forwarding to the driver
Preset both receive and send CQ pointers prior to call to the drivers and
overwrite it later again till the mlx4 is going to be changed do not
overwrite ibqp properties.
This change is needed for mlx5, because in case of QP creation failure, it
will go to the path of QP destroy which relies on proper CQ pointers.
BUG: KASAN: use-after-free in create_qp.cold+0x164/0x16e [mlx5_ib]
Write of size 8 at addr ffff8880064c55c0 by task a.out/246
CPU: 0 PID: 246 Comm: a.out Not tainted 5.15.0+ #291
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
Call Trace:
dump_stack_lvl+0x45/0x59
print_address_description.constprop.0+0x1f/0x140
kasan_report.cold+0x83/0xdf
create_qp.cold+0x164/0x16e [mlx5_ib]
mlx5_ib_create_qp+0x358/0x28a0 [mlx5_ib]
create_qp.part.0+0x45b/0x6a0 [ib_core]
ib_create_qp_user+0x97/0x150 [ib_core]
ib_uverbs_handler_UVERBS_METHOD_QP_CREATE+0x92c/0x1250 [ib_uverbs]
ib_uverbs_cmd_verbs+0x1c38/0x3150 [ib_uverbs]
ib_uverbs_ioctl+0x169/0x260 [ib_uverbs]
__x64_sys_ioctl+0x866/0x14d0
do_syscall_64+0x3d/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Allocated by task 246:
kasan_save_stack+0x1b/0x40
__kasan_kmalloc+0xa4/0xd0
create_qp.part.0+0x92/0x6a0 [ib_core]
ib_create_qp_user+0x97/0x150 [ib_core]
ib_uverbs_handler_UVERBS_METHOD_QP_CREATE+0x92c/0x1250 [ib_uverbs]
ib_uverbs_cmd_verbs+0x1c38/0x3150 [ib_uverbs]
ib_uverbs_ioctl+0x169/0x260 [ib_uverbs]
__x64_sys_ioctl+0x866/0x14d0
do_syscall_64+0x3d/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Freed by task 246:
kasan_save_stack+0x1b/0x40
kasan_set_track+0x1c/0x30
kasan_set_free_info+0x20/0x30
__kasan_slab_free+0x10c/0x150
slab_free_freelist_hook+0xb4/0x1b0
kfree+0xe7/0x2a0
create_qp.part.0+0x52b/0x6a0 [ib_core]
ib_create_qp_user+0x97/0x150 [ib_core]
ib_uverbs_handler_UVERBS_METHOD_QP_CREATE+0x92c/0x1250 [ib_uverbs]
ib_uverbs_cmd_verbs+0x1c38/0x3150 [ib_uverbs]
ib_uverbs_ioctl+0x169/0x260 [ib_uverbs]
__x64_sys_ioctl+0x866/0x14d0
do_syscall_64+0x3d/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: nullify cq->dbg pointer in mlx5_debug_cq_remove()
Prior to this patch in case mlx5_core_destroy_cq() failed it proceeds
to rest of destroy operations. mlx5_core_destroy_cq() could be called again
by user and cause additional call of mlx5_debug_cq_remove().
cq->dbg was not nullify in previous call and cause the crash.
Fix it by nullify cq->dbg pointer after removal.
Also proceed to destroy operations only if FW return 0
for MLX5_CMD_OP_DESTROY_CQ command.
general protection fault, probably for non-canonical address 0x2000300004058: 0000 [#1] SMP PTI
CPU: 5 PID: 1228 Comm: python Not tainted 5.15.0-rc5_for_upstream_min_debug_2021_10_14_11_06 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:lockref_get+0x1/0x60
Code: 5d e9 53 ff ff ff 48 8d 7f 70 e8 0a 2e 48 00 c7 85 d0 00 00 00 02
00 00 00 c6 45 70 00 fb 5d c3 c3 cc cc cc cc cc cc cc cc 53 <48> 8b 17
48 89 fb 85 d2 75 3d 48 89 d0 bf 64 00 00 00 48 89 c1 48
RSP: 0018:ffff888137dd7a38 EFLAGS: 00010206
RAX: 0000000000000000 RBX: ffff888107d5f458 RCX: 00000000fffffffe
RDX: 000000000002c2b0 RSI: ffffffff8155e2e0 RDI: 0002000300004058
RBP: ffff888137dd7a88 R08: 0002000300004058 R09: ffff8881144a9f88
R10: 0000000000000000 R11: 0000000000000000 R12: ffff8881141d4000
R13: ffff888137dd7c68 R14: ffff888137dd7d58 R15: ffff888137dd7cc0
FS: 00007f4644f2a4c0(0000) GS:ffff8887a2d40000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055b4500f4380 CR3: 0000000114f7a003 CR4: 0000000000170ea0
Call Trace:
simple_recursive_removal+0x33/0x2e0
? debugfs_remove+0x60/0x60
debugfs_remove+0x40/0x60
mlx5_debug_cq_remove+0x32/0x70 [mlx5_core]
mlx5_core_destroy_cq+0x41/0x1d0 [mlx5_core]
devx_obj_cleanup+0x151/0x330 [mlx5_ib]
? __pollwait+0xd0/0xd0
? xas_load+0x5/0x70
? xa_load+0x62/0xa0
destroy_hw_idr_uobject+0x20/0x80 [ib_uverbs]
uverbs_destroy_uobject+0x3b/0x360 [ib_uverbs]
uobj_destroy+0x54/0xa0 [ib_uverbs]
ib_uverbs_cmd_verbs+0xaf2/0x1160 [ib_uverbs]
? uverbs_finalize_object+0xd0/0xd0 [ib_uverbs]
ib_uverbs_ioctl+0xc4/0x1b0 [ib_uverbs]
__x64_sys_ioctl+0x3e4/0x8e0
In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix use-after-free in lpfc_unreg_rpi() routine
An error is detected with the following report when unloading the driver:
"KASAN: use-after-free in lpfc_unreg_rpi+0x1b1b"
The NLP_REG_LOGIN_SEND nlp_flag is set in lpfc_reg_fab_ctrl_node(), but the
flag is not cleared upon completion of the login.
This allows a second call to lpfc_unreg_rpi() to proceed with nlp_rpi set
to LPFC_RPI_ALLOW_ERROR. This results in a use after free access when used
as an rpi_ids array index.
Fix by clearing the NLP_REG_LOGIN_SEND nlp_flag in
lpfc_mbx_cmpl_fc_reg_login().
Traccar is an open source GPS tracking system. Traccar versions 5.1 through 5.12 allow arbitrary files to be uploaded through the device image upload API. Attackers have full control over the file contents, full control over the directory where the file is stored, full control over the file extension, and partial control over the file name. While it's not for an attacker to overwrite an existing file, an attacker can create new files with certain names and attacker-controlled extensions anywhere on the file system. This can potentially lead to remote code execution, XSS, DOS, etc. The default install of Traccar makes this vulnerability more severe. Self-registration is enabled by default, allowing anyone to create an account to exploit this vulnerability. Traccar also runs by default with root/system privileges, allowing files to be placed anywhere on the file system. Version 6.0 contains a fix for the issue. One may also turn off self-registration by default, as that would make most vulnerabilities in the application much harder to exploit by default and reduce the severity considerably.
A Denial of Service (DoS) vulnerability exists in the mintplex-labs/anything-llm repository when the application is running in 'just me' mode with a password. An attacker can exploit this vulnerability by making a request to the endpoint using the [validatedRequest] middleware with a specially crafted 'Authorization:' header. This vulnerability leads to uncontrolled resource consumption, causing a DoS condition.
A stored Cross-Site Scripting (XSS) vulnerability exists in the chat functionality of the mintplex-labs/anything-llm repository, allowing attackers to execute arbitrary JavaScript in the context of a user's session. By manipulating the ChatBot responses, an attacker can inject malicious scripts to perform actions on behalf of the user, such as creating a new admin account or changing the user's password, leading to a complete takeover of the AnythingLLM application. The vulnerability stems from the improper sanitization of user and ChatBot input, specifically through the use of `dangerouslySetInnerHTML`. Successful exploitation requires convincing an admin to add a malicious LocalAI ChatBot to their AnythingLLM instance.
A vulnerability in how Palo Alto Networks PAN-OS software processes data received from Cloud Identity Engine (CIE) agents enables modification of User-ID groups. This impacts user access to network resources where users may be inappropriately denied or allowed access to resources based on your existing Security Policy rules.
A vulnerability in Palo Alto Networks PAN-OS software enables a remote attacker to reboot PAN-OS firewalls when receiving Windows New Technology LAN Manager (NTLM) packets from Windows servers. Repeated attacks eventually cause the firewall to enter maintenance mode, which requires manual intervention to bring the firewall back online.