Security Vulnerabilities
- CVEs Published In February 2025
In the Linux kernel, the following vulnerability has been resolved:
media: usb: go7007: s2250-board: fix leak in probe()
Call i2c_unregister_device(audio) on this error path.
In the Linux kernel, the following vulnerability has been resolved:
media: ti-vpe: cal: Fix a NULL pointer dereference in cal_ctx_v4l2_init_formats()
In cal_ctx_v4l2_init_formats(), devm_kzalloc() is assigned to
ctx->active_fmt and there is a dereference of it after that, which could
lead to NULL pointer dereference on failure of devm_kzalloc().
Fix this bug by adding a NULL check of ctx->active_fmt.
This bug was found by a static analyzer.
Builds with 'make allyesconfig' show no new warnings, and our static
analyzer no longer warns about this code.
In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix missing free nid in f2fs_handle_failed_inode
This patch fixes xfstests/generic/475 failure.
[ 293.680694] F2FS-fs (dm-1): May loss orphan inode, run fsck to fix.
[ 293.685358] Buffer I/O error on dev dm-1, logical block 8388592, async page read
[ 293.691527] Buffer I/O error on dev dm-1, logical block 8388592, async page read
[ 293.691764] sh (7615): drop_caches: 3
[ 293.691819] sh (7616): drop_caches: 3
[ 293.694017] Buffer I/O error on dev dm-1, logical block 1, async page read
[ 293.695659] sh (7618): drop_caches: 3
[ 293.696979] sh (7617): drop_caches: 3
[ 293.700290] sh (7623): drop_caches: 3
[ 293.708621] sh (7626): drop_caches: 3
[ 293.711386] sh (7628): drop_caches: 3
[ 293.711825] sh (7627): drop_caches: 3
[ 293.716738] sh (7630): drop_caches: 3
[ 293.719613] sh (7632): drop_caches: 3
[ 293.720971] sh (7633): drop_caches: 3
[ 293.727741] sh (7634): drop_caches: 3
[ 293.730783] sh (7636): drop_caches: 3
[ 293.732681] sh (7635): drop_caches: 3
[ 293.732988] sh (7637): drop_caches: 3
[ 293.738836] sh (7639): drop_caches: 3
[ 293.740568] sh (7641): drop_caches: 3
[ 293.743053] sh (7640): drop_caches: 3
[ 293.821889] ------------[ cut here ]------------
[ 293.824654] kernel BUG at fs/f2fs/node.c:3334!
[ 293.826226] invalid opcode: 0000 [#1] PREEMPT SMP PTI
[ 293.828713] CPU: 0 PID: 7653 Comm: umount Tainted: G OE 5.17.0-rc1-custom #1
[ 293.830946] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
[ 293.832526] RIP: 0010:f2fs_destroy_node_manager+0x33f/0x350 [f2fs]
[ 293.833905] Code: e8 d6 3d f9 f9 48 8b 45 d0 65 48 2b 04 25 28 00 00 00 75 1a 48 81 c4 28 03 00 00 5b 41 5c 41 5d 41 5e 41 5f 5d c3 0f 0b
[ 293.837783] RSP: 0018:ffffb04ec31e7a20 EFLAGS: 00010202
[ 293.839062] RAX: 0000000000000001 RBX: ffff9df947db2eb8 RCX: 0000000080aa0072
[ 293.840666] RDX: 0000000000000000 RSI: ffffe86c0432a140 RDI: ffffffffc0b72a21
[ 293.842261] RBP: ffffb04ec31e7d70 R08: ffff9df94ca85780 R09: 0000000080aa0072
[ 293.843909] R10: ffff9df94ca85700 R11: ffff9df94e1ccf58 R12: ffff9df947db2e00
[ 293.845594] R13: ffff9df947db2ed0 R14: ffff9df947db2eb8 R15: ffff9df947db2eb8
[ 293.847855] FS: 00007f5a97379800(0000) GS:ffff9dfa77c00000(0000) knlGS:0000000000000000
[ 293.850647] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 293.852940] CR2: 00007f5a97528730 CR3: 000000010bc76005 CR4: 0000000000370ef0
[ 293.854680] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 293.856423] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 293.858380] Call Trace:
[ 293.859302] <TASK>
[ 293.860311] ? ttwu_do_wakeup+0x1c/0x170
[ 293.861800] ? ttwu_do_activate+0x6d/0xb0
[ 293.863057] ? _raw_spin_unlock_irqrestore+0x29/0x40
[ 293.864411] ? try_to_wake_up+0x9d/0x5e0
[ 293.865618] ? debug_smp_processor_id+0x17/0x20
[ 293.866934] ? debug_smp_processor_id+0x17/0x20
[ 293.868223] ? free_unref_page+0xbf/0x120
[ 293.869470] ? __free_slab+0xcb/0x1c0
[ 293.870614] ? preempt_count_add+0x7a/0xc0
[ 293.871811] ? __slab_free+0xa0/0x2d0
[ 293.872918] ? __wake_up_common_lock+0x8a/0xc0
[ 293.874186] ? __slab_free+0xa0/0x2d0
[ 293.875305] ? free_inode_nonrcu+0x20/0x20
[ 293.876466] ? free_inode_nonrcu+0x20/0x20
[ 293.877650] ? debug_smp_processor_id+0x17/0x20
[ 293.878949] ? call_rcu+0x11a/0x240
[ 293.880060] ? f2fs_destroy_stats+0x59/0x60 [f2fs]
[ 293.881437] ? kfree+0x1fe/0x230
[ 293.882674] f2fs_put_super+0x160/0x390 [f2fs]
[ 293.883978] generic_shutdown_super+0x7a/0x120
[ 293.885274] kill_block_super+0x27/0x50
[ 293.886496] kill_f2fs_super+0x7f/0x100 [f2fs]
[ 293.887806] deactivate_locked_super+0x35/0xa0
[ 293.889271] deactivate_super+0x40/0x50
[ 293.890513] cleanup_mnt+0x139/0x190
[ 293.891689] __cleanup_mnt+0x12/0x20
[ 293.892850] task_work_run+0x64/0xa0
[ 293.894035] exit_to_user_mode_prepare+0x1b7/
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
watch_queue: Actually free the watch
free_watch() does everything barring actually freeing the watch object. Fix
this by adding the missing kfree.
kmemleak produces a report something like the following. Note that as an
address can be seen in the first word, the watch would appear to have gone
through call_rcu().
BUG: memory leak
unreferenced object 0xffff88810ce4a200 (size 96):
comm "syz-executor352", pid 3605, jiffies 4294947473 (age 13.720s)
hex dump (first 32 bytes):
e0 82 48 0d 81 88 ff ff 00 00 00 00 00 00 00 00 ..H.............
80 a2 e4 0c 81 88 ff ff 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffff8214e6cc>] kmalloc include/linux/slab.h:581 [inline]
[<ffffffff8214e6cc>] kzalloc include/linux/slab.h:714 [inline]
[<ffffffff8214e6cc>] keyctl_watch_key+0xec/0x2e0 security/keys/keyctl.c:1800
[<ffffffff8214ec84>] __do_sys_keyctl+0x3c4/0x490 security/keys/keyctl.c:2016
[<ffffffff84493a25>] do_syscall_x64 arch/x86/entry/common.c:50 [inline]
[<ffffffff84493a25>] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
[<ffffffff84600068>] entry_SYSCALL_64_after_hwframe+0x44/0xae
In the Linux kernel, the following vulnerability has been resolved:
watch_queue: Fix NULL dereference in error cleanup
In watch_queue_set_size(), the error cleanup code doesn't take account of
the fact that __free_page() can't handle a NULL pointer when trying to free
up buffer pages that did get allocated.
Fix this by only calling __free_page() on the pages actually allocated.
Without the fix, this can lead to something like the following:
BUG: KASAN: null-ptr-deref in __free_pages+0x1f/0x1b0 mm/page_alloc.c:5473
Read of size 4 at addr 0000000000000034 by task syz-executor168/3599
...
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
__kasan_report mm/kasan/report.c:446 [inline]
kasan_report.cold+0x66/0xdf mm/kasan/report.c:459
check_region_inline mm/kasan/generic.c:183 [inline]
kasan_check_range+0x13d/0x180 mm/kasan/generic.c:189
instrument_atomic_read include/linux/instrumented.h:71 [inline]
atomic_read include/linux/atomic/atomic-instrumented.h:27 [inline]
page_ref_count include/linux/page_ref.h:67 [inline]
put_page_testzero include/linux/mm.h:717 [inline]
__free_pages+0x1f/0x1b0 mm/page_alloc.c:5473
watch_queue_set_size+0x499/0x630 kernel/watch_queue.c:275
pipe_ioctl+0xac/0x2b0 fs/pipe.c:632
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:874 [inline]
__se_sys_ioctl fs/ioctl.c:860 [inline]
__x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
In the Linux kernel, the following vulnerability has been resolved:
crypto: ccree - Fix use after free in cc_cipher_exit()
kfree_sensitive(ctx_p->user.key) will free the ctx_p->user.key. But
ctx_p->user.key is still used in the next line, which will lead to a
use after free.
We can call kfree_sensitive() after dev_dbg() to avoid the uaf.
In the Linux kernel, the following vulnerability has been resolved:
block: don't delete queue kobject before its children
kobjects aren't supposed to be deleted before their child kobjects are
deleted. Apparently this is usually benign; however, a WARN will be
triggered if one of the child kobjects has a named attribute group:
sysfs group 'modes' not found for kobject 'crypto'
WARNING: CPU: 0 PID: 1 at fs/sysfs/group.c:278 sysfs_remove_group+0x72/0x80
...
Call Trace:
sysfs_remove_groups+0x29/0x40 fs/sysfs/group.c:312
__kobject_del+0x20/0x80 lib/kobject.c:611
kobject_cleanup+0xa4/0x140 lib/kobject.c:696
kobject_release lib/kobject.c:736 [inline]
kref_put include/linux/kref.h:65 [inline]
kobject_put+0x53/0x70 lib/kobject.c:753
blk_crypto_sysfs_unregister+0x10/0x20 block/blk-crypto-sysfs.c:159
blk_unregister_queue+0xb0/0x110 block/blk-sysfs.c:962
del_gendisk+0x117/0x250 block/genhd.c:610
Fix this by moving the kobject_del() and the corresponding
kobject_uevent() to the correct place.
In the Linux kernel, the following vulnerability has been resolved:
crypto: hisilicon/sec - fix the aead software fallback for engine
Due to the subreq pointer misuse the private context memory. The aead
soft crypto occasionally casues the OS panic as setting the 64K page.
Here is fix it.
In the Linux kernel, the following vulnerability has been resolved:
ASoC: atmel: Fix error handling in sam9x5_wm8731_driver_probe
The device_node pointer is returned by of_parse_phandle() with refcount
incremented. We should use of_node_put() on it when done.
This function only calls of_node_put() in the regular path.
And it will cause refcount leak in error path.
In the Linux kernel, the following vulnerability has been resolved:
ASoC: mxs: Fix error handling in mxs_sgtl5000_probe
This function only calls of_node_put() in the regular path.
And it will cause refcount leak in error paths.
For example, when codec_np is NULL, saif_np[0] and saif_np[1]
are not NULL, it will cause leaks.
of_node_put() will check if the node pointer is NULL, so we can
call it directly to release the refcount of regular pointers.