Security Vulnerabilities
- CVEs Published In February 2025
In the Linux kernel, the following vulnerability has been resolved:
cifs: potential buffer overflow in handling symlinks
Smatch printed a warning:
arch/x86/crypto/poly1305_glue.c:198 poly1305_update_arch() error:
__memcpy() 'dctx->buf' too small (16 vs u32max)
It's caused because Smatch marks 'link_len' as untrusted since it comes
from sscanf(). Add a check to ensure that 'link_len' is not larger than
the size of the 'link_str' buffer.
In the Linux kernel, the following vulnerability has been resolved:
nfc: nci: add flush_workqueue to prevent uaf
Our detector found a concurrent use-after-free bug when detaching an
NCI device. The main reason for this bug is the unexpected scheduling
between the used delayed mechanism (timer and workqueue).
The race can be demonstrated below:
Thread-1 Thread-2
| nci_dev_up()
| nci_open_device()
| __nci_request(nci_reset_req)
| nci_send_cmd
| queue_work(cmd_work)
nci_unregister_device() |
nci_close_device() | ...
del_timer_sync(cmd_timer)[1] |
... | Worker
nci_free_device() | nci_cmd_work()
kfree(ndev)[3] | mod_timer(cmd_timer)[2]
In short, the cleanup routine thought that the cmd_timer has already
been detached by [1] but the mod_timer can re-attach the timer [2], even
it is already released [3], resulting in UAF.
This UAF is easy to trigger, crash trace by POC is like below
[ 66.703713] ==================================================================
[ 66.703974] BUG: KASAN: use-after-free in enqueue_timer+0x448/0x490
[ 66.703974] Write of size 8 at addr ffff888009fb7058 by task kworker/u4:1/33
[ 66.703974]
[ 66.703974] CPU: 1 PID: 33 Comm: kworker/u4:1 Not tainted 5.18.0-rc2 #5
[ 66.703974] Workqueue: nfc2_nci_cmd_wq nci_cmd_work
[ 66.703974] Call Trace:
[ 66.703974] <TASK>
[ 66.703974] dump_stack_lvl+0x57/0x7d
[ 66.703974] print_report.cold+0x5e/0x5db
[ 66.703974] ? enqueue_timer+0x448/0x490
[ 66.703974] kasan_report+0xbe/0x1c0
[ 66.703974] ? enqueue_timer+0x448/0x490
[ 66.703974] enqueue_timer+0x448/0x490
[ 66.703974] __mod_timer+0x5e6/0xb80
[ 66.703974] ? mark_held_locks+0x9e/0xe0
[ 66.703974] ? try_to_del_timer_sync+0xf0/0xf0
[ 66.703974] ? lockdep_hardirqs_on_prepare+0x17b/0x410
[ 66.703974] ? queue_work_on+0x61/0x80
[ 66.703974] ? lockdep_hardirqs_on+0xbf/0x130
[ 66.703974] process_one_work+0x8bb/0x1510
[ 66.703974] ? lockdep_hardirqs_on_prepare+0x410/0x410
[ 66.703974] ? pwq_dec_nr_in_flight+0x230/0x230
[ 66.703974] ? rwlock_bug.part.0+0x90/0x90
[ 66.703974] ? _raw_spin_lock_irq+0x41/0x50
[ 66.703974] worker_thread+0x575/0x1190
[ 66.703974] ? process_one_work+0x1510/0x1510
[ 66.703974] kthread+0x2a0/0x340
[ 66.703974] ? kthread_complete_and_exit+0x20/0x20
[ 66.703974] ret_from_fork+0x22/0x30
[ 66.703974] </TASK>
[ 66.703974]
[ 66.703974] Allocated by task 267:
[ 66.703974] kasan_save_stack+0x1e/0x40
[ 66.703974] __kasan_kmalloc+0x81/0xa0
[ 66.703974] nci_allocate_device+0xd3/0x390
[ 66.703974] nfcmrvl_nci_register_dev+0x183/0x2c0
[ 66.703974] nfcmrvl_nci_uart_open+0xf2/0x1dd
[ 66.703974] nci_uart_tty_ioctl+0x2c3/0x4a0
[ 66.703974] tty_ioctl+0x764/0x1310
[ 66.703974] __x64_sys_ioctl+0x122/0x190
[ 66.703974] do_syscall_64+0x3b/0x90
[ 66.703974] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 66.703974]
[ 66.703974] Freed by task 406:
[ 66.703974] kasan_save_stack+0x1e/0x40
[ 66.703974] kasan_set_track+0x21/0x30
[ 66.703974] kasan_set_free_info+0x20/0x30
[ 66.703974] __kasan_slab_free+0x108/0x170
[ 66.703974] kfree+0xb0/0x330
[ 66.703974] nfcmrvl_nci_unregister_dev+0x90/0xd0
[ 66.703974] nci_uart_tty_close+0xdf/0x180
[ 66.703974] tty_ldisc_kill+0x73/0x110
[ 66.703974] tty_ldisc_hangup+0x281/0x5b0
[ 66.703974] __tty_hangup.part.0+0x431/0x890
[ 66.703974] tty_release+0x3a8/0xc80
[ 66.703974] __fput+0x1f0/0x8c0
[ 66.703974] task_work_run+0xc9/0x170
[ 66.703974] exit_to_user_mode_prepare+0x194/0x1a0
[ 66.703974] syscall_exit_to_user_mode+0x19/0x50
[ 66.703974] do_syscall_64+0x48/0x90
[ 66.703974] entry_SYSCALL_64_after_hwframe+0x44/0x
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
net/smc: Fix NULL pointer dereference in smc_pnet_find_ib()
dev_name() was called with dev.parent as argument but without to
NULL-check it before.
Solve this by checking the pointer before the call to dev_name().
In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: stmmac: fix altr_tse_pcs function when using a fixed-link
When using a fixed-link, the altr_tse_pcs driver crashes
due to null-pointer dereference as no phy_device is provided to
tse_pcs_fix_mac_speed function. Fix this by adding a check for
phy_dev before calling the tse_pcs_fix_mac_speed() function.
Also clean up the tse_pcs_fix_mac_speed function a bit. There is
no need to check for splitter_base and sgmii_adapter_base
because the driver will fail if these 2 variables are not
derived from the device tree.
In the Linux kernel, the following vulnerability has been resolved:
cachefiles: Fix KASAN slab-out-of-bounds in cachefiles_set_volume_xattr
Use the actual length of volume coherency data when setting the
xattr to avoid the following KASAN report.
BUG: KASAN: slab-out-of-bounds in cachefiles_set_volume_xattr+0xa0/0x350 [cachefiles]
Write of size 4 at addr ffff888101e02af4 by task kworker/6:0/1347
CPU: 6 PID: 1347 Comm: kworker/6:0 Kdump: loaded Not tainted 5.18.0-rc1-nfs-fscache-netfs+ #13
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.14.0-4.fc34 04/01/2014
Workqueue: events fscache_create_volume_work [fscache]
Call Trace:
<TASK>
dump_stack_lvl+0x45/0x5a
print_report.cold+0x5e/0x5db
? __lock_text_start+0x8/0x8
? cachefiles_set_volume_xattr+0xa0/0x350 [cachefiles]
kasan_report+0xab/0x120
? cachefiles_set_volume_xattr+0xa0/0x350 [cachefiles]
kasan_check_range+0xf5/0x1d0
memcpy+0x39/0x60
cachefiles_set_volume_xattr+0xa0/0x350 [cachefiles]
cachefiles_acquire_volume+0x2be/0x500 [cachefiles]
? __cachefiles_free_volume+0x90/0x90 [cachefiles]
fscache_create_volume_work+0x68/0x160 [fscache]
process_one_work+0x3b7/0x6a0
worker_thread+0x2c4/0x650
? process_one_work+0x6a0/0x6a0
kthread+0x16c/0x1a0
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x22/0x30
</TASK>
Allocated by task 1347:
kasan_save_stack+0x1e/0x40
__kasan_kmalloc+0x81/0xa0
cachefiles_set_volume_xattr+0x76/0x350 [cachefiles]
cachefiles_acquire_volume+0x2be/0x500 [cachefiles]
fscache_create_volume_work+0x68/0x160 [fscache]
process_one_work+0x3b7/0x6a0
worker_thread+0x2c4/0x650
kthread+0x16c/0x1a0
ret_from_fork+0x22/0x30
The buggy address belongs to the object at ffff888101e02af0
which belongs to the cache kmalloc-8 of size 8
The buggy address is located 4 bytes inside of
8-byte region [ffff888101e02af0, ffff888101e02af8)
The buggy address belongs to the physical page:
page:00000000a2292d70 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x101e02
flags: 0x17ffffc0000200(slab|node=0|zone=2|lastcpupid=0x1fffff)
raw: 0017ffffc0000200 0000000000000000 dead000000000001 ffff888100042280
raw: 0000000000000000 0000000080660066 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff888101e02980: fc 00 fc fc fc fc 00 fc fc fc fc 00 fc fc fc fc
ffff888101e02a00: 00 fc fc fc fc 00 fc fc fc fc 00 fc fc fc fc 00
>ffff888101e02a80: fc fc fc fc 00 fc fc fc fc 00 fc fc fc fc 04 fc
^
ffff888101e02b00: fc fc fc 00 fc fc fc fc 00 fc fc fc fc 00 fc fc
ffff888101e02b80: fc fc 00 fc fc fc fc 00 fc fc fc fc 00 fc fc fc
==================================================================
In the Linux kernel, the following vulnerability has been resolved:
ice: arfs: fix use-after-free when freeing @rx_cpu_rmap
The CI testing bots triggered the following splat:
[ 718.203054] BUG: KASAN: use-after-free in free_irq_cpu_rmap+0x53/0x80
[ 718.206349] Read of size 4 at addr ffff8881bd127e00 by task sh/20834
[ 718.212852] CPU: 28 PID: 20834 Comm: sh Kdump: loaded Tainted: G S W IOE 5.17.0-rc8_nextqueue-devqueue-02643-g23f3121aca93 #1
[ 718.219695] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0012.070720200218 07/07/2020
[ 718.223418] Call Trace:
[ 718.227139]
[ 718.230783] dump_stack_lvl+0x33/0x42
[ 718.234431] print_address_description.constprop.9+0x21/0x170
[ 718.238177] ? free_irq_cpu_rmap+0x53/0x80
[ 718.241885] ? free_irq_cpu_rmap+0x53/0x80
[ 718.245539] kasan_report.cold.18+0x7f/0x11b
[ 718.249197] ? free_irq_cpu_rmap+0x53/0x80
[ 718.252852] free_irq_cpu_rmap+0x53/0x80
[ 718.256471] ice_free_cpu_rx_rmap.part.11+0x37/0x50 [ice]
[ 718.260174] ice_remove_arfs+0x5f/0x70 [ice]
[ 718.263810] ice_rebuild_arfs+0x3b/0x70 [ice]
[ 718.267419] ice_rebuild+0x39c/0xb60 [ice]
[ 718.270974] ? asm_sysvec_apic_timer_interrupt+0x12/0x20
[ 718.274472] ? ice_init_phy_user_cfg+0x360/0x360 [ice]
[ 718.278033] ? delay_tsc+0x4a/0xb0
[ 718.281513] ? preempt_count_sub+0x14/0xc0
[ 718.284984] ? delay_tsc+0x8f/0xb0
[ 718.288463] ice_do_reset+0x92/0xf0 [ice]
[ 718.292014] ice_pci_err_resume+0x91/0xf0 [ice]
[ 718.295561] pci_reset_function+0x53/0x80
<...>
[ 718.393035] Allocated by task 690:
[ 718.433497] Freed by task 20834:
[ 718.495688] Last potentially related work creation:
[ 718.568966] The buggy address belongs to the object at ffff8881bd127e00
which belongs to the cache kmalloc-96 of size 96
[ 718.574085] The buggy address is located 0 bytes inside of
96-byte region [ffff8881bd127e00, ffff8881bd127e60)
[ 718.579265] The buggy address belongs to the page:
[ 718.598905] Memory state around the buggy address:
[ 718.601809] ffff8881bd127d00: fa fb fb fb fb fb fb fb fb fb fb fb fc fc fc fc
[ 718.604796] ffff8881bd127d80: 00 00 00 00 00 00 00 00 00 00 fc fc fc fc fc fc
[ 718.607794] >ffff8881bd127e00: fa fb fb fb fb fb fb fb fb fb fb fb fc fc fc fc
[ 718.610811] ^
[ 718.613819] ffff8881bd127e80: 00 00 00 00 00 00 00 00 00 00 00 00 fc fc fc fc
[ 718.617107] ffff8881bd127f00: fa fb fb fb fb fb fb fb fb fb fb fb fc fc fc fc
This is due to that free_irq_cpu_rmap() is always being called
*after* (devm_)free_irq() and thus it tries to work with IRQ descs
already freed. For example, on device reset the driver frees the
rmap right before allocating a new one (the splat above).
Make rmap creation and freeing function symmetrical with
{request,free}_irq() calls i.e. do that on ifup/ifdown instead
of device probe/remove/resume. These operations can be performed
independently from the actual device aRFS configuration.
Also, make sure ice_vsi_free_irq() clears IRQ affinity notifiers
only when aRFS is disabled -- otherwise, CPU rmap sets and clears
its own and they must not be touched manually.
In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: Fix the svc_deferred_event trace class
Fix a NULL deref crash that occurs when an svc_rqst is deferred
while the sunrpc tracing subsystem is enabled. svc_revisit() sets
dr->xprt to NULL, so it can't be relied upon in the tracepoint to
provide the remote's address.
Unfortunately we can't revert the "svc_deferred_class" hunk in
commit ece200ddd54b ("sunrpc: Save remote presentation address in
svc_xprt for trace events") because there is now a specific check
of event format specifiers for unsafe dereferences. The warning
that check emits is:
event svc_defer_recv has unsafe dereference of argument 1
A "%pISpc" format specifier with a "struct sockaddr *" is indeed
flagged by this check.
Instead, take the brute-force approach used by the svcrdma_qp_error
tracepoint. Convert the dr::addr field into a presentation address
in the TP_fast_assign() arm of the trace event, and store that as
a string. This fix can be backported to -stable kernels.
In the meantime, commit c6ced22997ad ("tracing: Update print fmt
check to handle new __get_sockaddr() macro") is now in v5.18, so
this wonky fix can be replaced with __sockaddr() and friends
properly during the v5.19 merge window.
In the Linux kernel, the following vulnerability has been resolved:
scsi: target: tcmu: Fix possible page UAF
tcmu_try_get_data_page() looks up pages under cmdr_lock, but it does not
take refcount properly and just returns page pointer. When
tcmu_try_get_data_page() returns, the returned page may have been freed by
tcmu_blocks_release().
We need to get_page() under cmdr_lock to avoid concurrent
tcmu_blocks_release().
In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Check for potential null return of kmalloc_array()
As the kmalloc_array() may return null, the 'event_waiters[i].wait' would lead to null-pointer dereference.
Therefore, it is better to check the return value of kmalloc_array() to avoid this confusion.
In the Linux kernel, the following vulnerability has been resolved:
i2c: dev: check return value when calling dev_set_name()
If dev_set_name() fails, the dev_name() is null, check the return
value of dev_set_name() to avoid the null-ptr-deref.