Security Vulnerabilities
- CVEs Published In February 2024
In the Linux kernel, the following vulnerability has been resolved:
ixgbe: Fix NULL pointer dereference in ethtool loopback test
The ixgbe driver currently generates a NULL pointer dereference when
performing the ethtool loopback test. This is due to the fact that there
isn't a q_vector associated with the test ring when it is setup as
interrupts are not normally added to the test rings.
To address this I have added code that will check for a q_vector before
returning a napi_id value. If a q_vector is not present it will return a
value of 0.
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: idxd: fix wq cleanup of WQCFG registers
A pre-release silicon erratum workaround where wq reset does not clear
WQCFG registers was leaked into upstream code. Use wq reset command
instead of blasting the MMIO region. This also address an issue where
we clobber registers in future devices.
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: idxd: clear MSIX permission entry on shutdown
Add disabling/clearing of MSIX permission entries on device shutdown to
mirror the enabling of the MSIX entries on probe. Current code left the
MSIX enabled and the pasid entries still programmed at device shutdown.
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: idxd: fix wq size store permission state
WQ size can only be changed when the device is disabled. Current code
allows change when device is enabled but wq is disabled. Change the check
to detect device state.
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: idxd: Fix clobbering of SWERR overflow bit on writeback
Current code blindly writes over the SWERR and the OVERFLOW bits. Write
back the bits actually read instead so the driver avoids clobbering the
OVERFLOW bit that comes after the register is read.
In the Linux kernel, the following vulnerability has been resolved:
ARM: footbridge: fix PCI interrupt mapping
Since commit 30fdfb929e82 ("PCI: Add a call to pci_assign_irq() in
pci_device_probe()"), the PCI code will call the IRQ mapping function
whenever a PCI driver is probed. If these are marked as __init, this
causes an oops if a PCI driver is loaded or bound after the kernel has
initialised.
In the Linux kernel, the following vulnerability has been resolved:
ARM: 9063/1: mm: reduce maximum number of CPUs if DEBUG_KMAP_LOCAL is enabled
The debugging code for kmap_local() doubles the number of per-CPU fixmap
slots allocated for kmap_local(), in order to use half of them as guard
regions. This causes the fixmap region to grow downwards beyond the start
of its reserved window if the supported number of CPUs is large, and collide
with the newly added virtual DT mapping right below it, which is obviously
not good.
One manifestation of this is EFI boot on a kernel built with NR_CPUS=32
and CONFIG_DEBUG_KMAP_LOCAL=y, which may pass the FDT in highmem, resulting
in block entries below the fixmap region that the fixmap code misidentifies
as fixmap table entries, and subsequently tries to dereference using a
phys-to-virt translation that is only valid for lowmem. This results in a
cryptic splat such as the one below.
ftrace: allocating 45548 entries in 89 pages
8<--- cut here ---
Unable to handle kernel paging request at virtual address fc6006f0
pgd = (ptrval)
[fc6006f0] *pgd=80000040207003, *pmd=00000000
Internal error: Oops: a06 [#1] SMP ARM
Modules linked in:
CPU: 0 PID: 0 Comm: swapper Not tainted 5.11.0+ #382
Hardware name: Generic DT based system
PC is at cpu_ca15_set_pte_ext+0x24/0x30
LR is at __set_fixmap+0xe4/0x118
pc : [<c041ac9c>] lr : [<c04189d8>] psr: 400000d3
sp : c1601ed8 ip : 00400000 fp : 00800000
r10: 0000071f r9 : 00421000 r8 : 00c00000
r7 : 00c00000 r6 : 0000071f r5 : ffade000 r4 : 4040171f
r3 : 00c00000 r2 : 4040171f r1 : c041ac78 r0 : fc6006f0
Flags: nZcv IRQs off FIQs off Mode SVC_32 ISA ARM Segment none
Control: 30c5387d Table: 40203000 DAC: 00000001
Process swapper (pid: 0, stack limit = 0x(ptrval))
So let's limit CONFIG_NR_CPUS to 16 when CONFIG_DEBUG_KMAP_LOCAL=y. Also,
fix the BUILD_BUG_ON() check that was supposed to catch this, by checking
whether the region grows below the start address rather than above the end
address.
In the Linux kernel, the following vulnerability has been resolved:
ch_ktls: Fix kernel panic
Taking page refcount is not ideal and causes kernel panic
sometimes. It's better to take tx_ctx lock for the complete
skb transmit, to avoid page cleanup if ACK received in middle.
In the Linux kernel, the following vulnerability has been resolved:
net: Make tcp_allowed_congestion_control readonly in non-init netns
Currently, tcp_allowed_congestion_control is global and writable;
writing to it in any net namespace will leak into all other net
namespaces.
tcp_available_congestion_control and tcp_allowed_congestion_control are
the only sysctls in ipv4_net_table (the per-netns sysctl table) with a
NULL data pointer; their handlers (proc_tcp_available_congestion_control
and proc_allowed_congestion_control) have no other way of referencing a
struct net. Thus, they operate globally.
Because ipv4_net_table does not use designated initializers, there is no
easy way to fix up this one "bad" table entry. However, the data pointer
updating logic shouldn't be applied to NULL pointers anyway, so we
instead force these entries to be read-only.
These sysctls used to exist in ipv4_table (init-net only), but they were
moved to the per-net ipv4_net_table, presumably without realizing that
tcp_allowed_congestion_control was writable and thus introduced a leak.
Because the intent of that commit was only to know (i.e. read) "which
congestion algorithms are available or allowed", this read-only solution
should be sufficient.
The logic added in recent commit
31c4d2f160eb: ("net: Ensure net namespace isolation of sysctls")
does not and cannot check for NULL data pointers, because
other table entries (e.g. /proc/sys/net/netfilter/nf_log/) have
.data=NULL but use other methods (.extra2) to access the struct net.
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nftables: clone set element expression template
memcpy() breaks when using connlimit in set elements. Use
nft_expr_clone() to initialize the connlimit expression list, otherwise
connlimit garbage collector crashes when walking on the list head copy.
[ 493.064656] Workqueue: events_power_efficient nft_rhash_gc [nf_tables]
[ 493.064685] RIP: 0010:find_or_evict+0x5a/0x90 [nf_conncount]
[ 493.064694] Code: 2b 43 40 83 f8 01 77 0d 48 c7 c0 f5 ff ff ff 44 39 63 3c 75 df 83 6d 18 01 48 8b 43 08 48 89 de 48 8b 13 48 8b 3d ee 2f 00 00 <48> 89 42 08 48 89 10 48 b8 00 01 00 00 00 00 ad de 48 89 03 48 83
[ 493.064699] RSP: 0018:ffffc90000417dc0 EFLAGS: 00010297
[ 493.064704] RAX: 0000000000000000 RBX: ffff888134f38410 RCX: 0000000000000000
[ 493.064708] RDX: 0000000000000000 RSI: ffff888134f38410 RDI: ffff888100060cc0
[ 493.064711] RBP: ffff88812ce594a8 R08: ffff888134f38438 R09: 00000000ebb9025c
[ 493.064714] R10: ffffffff8219f838 R11: 0000000000000017 R12: 0000000000000001
[ 493.064718] R13: ffffffff82146740 R14: ffff888134f38410 R15: 0000000000000000
[ 493.064721] FS: 0000000000000000(0000) GS:ffff88840e440000(0000) knlGS:0000000000000000
[ 493.064725] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 493.064729] CR2: 0000000000000008 CR3: 00000001330aa002 CR4: 00000000001706e0
[ 493.064733] Call Trace:
[ 493.064737] nf_conncount_gc_list+0x8f/0x150 [nf_conncount]
[ 493.064746] nft_rhash_gc+0x106/0x390 [nf_tables]