Security Vulnerabilities
- CVEs Published In February 2025
In the Linux kernel, the following vulnerability has been resolved:
jffs2: fix memory leak in jffs2_do_mount_fs
If jffs2_build_filesystem() in jffs2_do_mount_fs() returns an error,
we can observe the following kmemleak report:
--------------------------------------------
unreferenced object 0xffff88811b25a640 (size 64):
comm "mount", pid 691, jiffies 4294957728 (age 71.952s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffffa493be24>] kmem_cache_alloc_trace+0x584/0x880
[<ffffffffa5423a06>] jffs2_sum_init+0x86/0x130
[<ffffffffa5400e58>] jffs2_do_mount_fs+0x798/0xac0
[<ffffffffa540acf3>] jffs2_do_fill_super+0x383/0xc30
[<ffffffffa540c00a>] jffs2_fill_super+0x2ea/0x4c0
[...]
unreferenced object 0xffff88812c760000 (size 65536):
comm "mount", pid 691, jiffies 4294957728 (age 71.952s)
hex dump (first 32 bytes):
bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb ................
bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb ................
backtrace:
[<ffffffffa493a449>] __kmalloc+0x6b9/0x910
[<ffffffffa5423a57>] jffs2_sum_init+0xd7/0x130
[<ffffffffa5400e58>] jffs2_do_mount_fs+0x798/0xac0
[<ffffffffa540acf3>] jffs2_do_fill_super+0x383/0xc30
[<ffffffffa540c00a>] jffs2_fill_super+0x2ea/0x4c0
[...]
--------------------------------------------
This is because the resources allocated in jffs2_sum_init() are not
released. Call jffs2_sum_exit() to release these resources to solve
the problem.
In the Linux kernel, the following vulnerability has been resolved:
NFSD: prevent integer overflow on 32 bit systems
On a 32 bit system, the "len * sizeof(*p)" operation can have an
integer overflow.
In the Linux kernel, the following vulnerability has been resolved:
NFSD: prevent underflow in nfssvc_decode_writeargs()
Smatch complains:
fs/nfsd/nfsxdr.c:341 nfssvc_decode_writeargs()
warn: no lower bound on 'args->len'
Change the type to unsigned to prevent this issue.
In the Linux kernel, the following vulnerability has been resolved:
dm: fix use-after-free in dm_cleanup_zoned_dev()
dm_cleanup_zoned_dev() uses queue, so it must be called
before blk_cleanup_disk() starts its killing:
blk_cleanup_disk->blk_cleanup_queue()->kobject_put()->blk_release_queue()->
->...RCU...->blk_free_queue_rcu()->kmem_cache_free()
Otherwise, RCU callback may be executed first and
dm_cleanup_zoned_dev() will touch free'd memory:
BUG: KASAN: use-after-free in dm_cleanup_zoned_dev+0x33/0xd0
Read of size 8 at addr ffff88805ac6e430 by task dmsetup/681
CPU: 4 PID: 681 Comm: dmsetup Not tainted 5.17.0-rc2+ #6
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x57/0x7d
print_address_description.constprop.0+0x1f/0x150
? dm_cleanup_zoned_dev+0x33/0xd0
kasan_report.cold+0x7f/0x11b
? dm_cleanup_zoned_dev+0x33/0xd0
dm_cleanup_zoned_dev+0x33/0xd0
__dm_destroy+0x26a/0x400
? dm_blk_ioctl+0x230/0x230
? up_write+0xd8/0x270
dev_remove+0x156/0x1d0
ctl_ioctl+0x269/0x530
? table_clear+0x140/0x140
? lock_release+0xb2/0x750
? remove_all+0x40/0x40
? rcu_read_lock_sched_held+0x12/0x70
? lock_downgrade+0x3c0/0x3c0
? rcu_read_lock_sched_held+0x12/0x70
dm_ctl_ioctl+0xa/0x10
__x64_sys_ioctl+0xb9/0xf0
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7fb6dfa95c27
In the Linux kernel, the following vulnerability has been resolved:
crypto: ccree - Fix use after free in cc_cipher_exit()
kfree_sensitive(ctx_p->user.key) will free the ctx_p->user.key. But
ctx_p->user.key is still used in the next line, which will lead to a
use after free.
We can call kfree_sensitive() after dev_dbg() to avoid the uaf.
In the Linux kernel, the following vulnerability has been resolved:
ASoC: atmel: Fix error handling in sam9x5_wm8731_driver_probe
The device_node pointer is returned by of_parse_phandle() with refcount
incremented. We should use of_node_put() on it when done.
This function only calls of_node_put() in the regular path.
And it will cause refcount leak in error path.
In the Linux kernel, the following vulnerability has been resolved:
ASoC: mxs: Fix error handling in mxs_sgtl5000_probe
This function only calls of_node_put() in the regular path.
And it will cause refcount leak in error paths.
For example, when codec_np is NULL, saif_np[0] and saif_np[1]
are not NULL, it will cause leaks.
of_node_put() will check if the node pointer is NULL, so we can
call it directly to release the refcount of regular pointers.
In the Linux kernel, the following vulnerability has been resolved:
mt76: mt7915: fix possible memory leak in mt7915_mcu_add_sta
Free allocated skb in mt7915_mcu_add_sta routine in case of failures.
In the Linux kernel, the following vulnerability has been resolved:
rtw88: fix memory overrun and memory leak during hw_scan
Previously we allocated less memory than actual required, overwrite
to the buffer causes the mm module to complaint and raise access
violation faults. Along with potential memory leaks when returned
early. Fix these by passing the correct size and proper deinit flow.
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix a NULL pointer dereference in amdgpu_dm_connector_add_common_modes()
In amdgpu_dm_connector_add_common_modes(), amdgpu_dm_create_common_mode()
is assigned to mode and is passed to drm_mode_probed_add() directly after
that. drm_mode_probed_add() passes &mode->head to list_add_tail(), and
there is a dereference of it in list_add_tail() without recoveries, which
could lead to NULL pointer dereference on failure of
amdgpu_dm_create_common_mode().
Fix this by adding a NULL check of mode.
This bug was found by a static analyzer.
Builds with 'make allyesconfig' show no new warnings,
and our static analyzer no longer warns about this code.