Security Vulnerabilities
- CVEs Published In February 2025
In the Linux kernel, the following vulnerability has been resolved:
perf/core: Fix data race between perf_event_set_output() and perf_mmap_close()
Yang Jihing reported a race between perf_event_set_output() and
perf_mmap_close():
CPU1 CPU2
perf_mmap_close(e2)
if (atomic_dec_and_test(&e2->rb->mmap_count)) // 1 - > 0
detach_rest = true
ioctl(e1, IOC_SET_OUTPUT, e2)
perf_event_set_output(e1, e2)
...
list_for_each_entry_rcu(e, &e2->rb->event_list, rb_entry)
ring_buffer_attach(e, NULL);
// e1 isn't yet added and
// therefore not detached
ring_buffer_attach(e1, e2->rb)
list_add_rcu(&e1->rb_entry,
&e2->rb->event_list)
After this; e1 is attached to an unmapped rb and a subsequent
perf_mmap() will loop forever more:
again:
mutex_lock(&e->mmap_mutex);
if (event->rb) {
...
if (!atomic_inc_not_zero(&e->rb->mmap_count)) {
...
mutex_unlock(&e->mmap_mutex);
goto again;
}
}
The loop in perf_mmap_close() holds e2->mmap_mutex, while the attach
in perf_event_set_output() holds e1->mmap_mutex. As such there is no
serialization to avoid this race.
Change perf_event_set_output() to take both e1->mmap_mutex and
e2->mmap_mutex to alleviate that problem. Additionally, have the loop
in perf_mmap() detach the rb directly, this avoids having to wait for
the concurrent perf_mmap_close() to get around to doing it to make
progress.
In the Linux kernel, the following vulnerability has been resolved:
pinctrl: ralink: Check for null return of devm_kcalloc
Because of the possible failure of the allocation, data->domains might
be NULL pointer and will cause the dereference of the NULL pointer
later.
Therefore, it might be better to check it and directly return -ENOMEM
without releasing data manually if fails, because the comment of the
devm_kmalloc() says "Memory allocated with this function is
automatically freed on driver detach.".
In the Linux kernel, the following vulnerability has been resolved:
power/reset: arm-versatile: Fix refcount leak in versatile_reboot_probe
of_find_matching_node_and_match() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not need anymore.
Add missing of_node_put() to avoid refcount leak.
In the Linux kernel, the following vulnerability has been resolved:
KVM: VMX: Prevent RSB underflow before vmenter
On VMX, there are some balanced returns between the time the guest's
SPEC_CTRL value is written, and the vmenter.
Balanced returns (matched by a preceding call) are usually ok, but it's
at least theoretically possible an NMI with a deep call stack could
empty the RSB before one of the returns.
For maximum paranoia, don't allow *any* returns (balanced or otherwise)
between the SPEC_CTRL write and the vmenter.
[ bp: Fix 32-bit build. ]
In the Linux kernel, the following vulnerability has been resolved:
x86/speculation: Fill RSB on vmexit for IBRS
Prevent RSB underflow/poisoning attacks with RSB. While at it, add a
bunch of comments to attempt to document the current state of tribal
knowledge about RSB attacks and what exactly is being mitigated.
In the Linux kernel, the following vulnerability has been resolved:
power: supply: core: Fix boundary conditions in interpolation
The functions power_supply_temp2resist_simple and power_supply_ocv2cap_simple
handle boundary conditions incorrectly.
The change was introduced in a4585ba2050f460f749bbaf2b67bd56c41e30283
("power: supply: core: Use library interpolation").
There are two issues: First, the lines "high = i - 1" and "high = i" in ocv2cap
have the wrong order compared to temp2resist. As a consequence, ocv2cap
sets high=-1 if ocv>table[0].ocv, which causes an out-of-bounds read.
Second, the logic of temp2resist is also not correct.
Consider the case table[] = {{20, 100}, {10, 80}, {0, 60}}.
For temp=5, we expect a resistance of 70% by interpolation.
However, temp2resist sets high=low=2 and returns 60.
In the Linux kernel, the following vulnerability has been resolved:
serial: 8250: Fix PM usage_count for console handover
When console is enabled, univ8250_console_setup() calls
serial8250_console_setup() before .dev is set to uart_port. Therefore,
it will not call pm_runtime_get_sync(). Later, when the actual driver
is going to take over univ8250_console_exit() is called. As .dev is
already set, serial8250_console_exit() makes pm_runtime_put_sync() call
with usage count being zero triggering PM usage count warning
(extra debug for univ8250_console_setup(), univ8250_console_exit(), and
serial8250_register_ports()):
[ 0.068987] univ8250_console_setup ttyS0 nodev
[ 0.499670] printk: console [ttyS0] enabled
[ 0.717955] printk: console [ttyS0] printing thread started
[ 1.960163] serial8250_register_ports assigned dev for ttyS0
[ 1.976830] printk: console [ttyS0] disabled
[ 1.976888] printk: console [ttyS0] printing thread stopped
[ 1.977073] univ8250_console_exit ttyS0 usage:0
[ 1.977075] serial8250 serial8250: Runtime PM usage count underflow!
[ 1.977429] dw-apb-uart.6: ttyS0 at MMIO 0x4010006000 (irq = 33, base_baud = 115200) is a 16550A
[ 1.977812] univ8250_console_setup ttyS0 usage:2
[ 1.978167] printk: console [ttyS0] printing thread started
[ 1.978203] printk: console [ttyS0] enabled
To fix the issue, call pm_runtime_get_sync() in
serial8250_register_ports() as soon as .dev is set for an uart_port
if it has console enabled.
This problem became apparent only recently because 82586a721595 ("PM:
runtime: Avoid device usage count underflows") added the warning
printout. I confirmed this problem also occurs with v5.18 (w/o the
warning printout, obviously).
In the Linux kernel, the following vulnerability has been resolved:
ASoC: rt711-sdca: fix kernel NULL pointer dereference when IO error
The initial settings will be written before the codec probe function.
But, the rt711->component doesn't be assigned yet.
If IO error happened during initial settings operations, it will cause the kernel panic.
This patch changed component->dev to slave->dev to fix this issue.
In the Linux kernel, the following vulnerability has been resolved:
tcp: Fix a data-race around sysctl_tcp_probe_threshold.
While reading sysctl_tcp_probe_threshold, it can be changed concurrently.
Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved:
tcp: Fix data-races around sysctl_tcp_min_snd_mss.
While reading sysctl_tcp_min_snd_mss, it can be changed concurrently.
Thus, we need to add READ_ONCE() to its readers.