Security Vulnerabilities
- CVEs Published In February 2024
Vulnerabilities in the ClearPass Policy Manager web-based management interface allow remote authenticated users to run arbitrary commands on the underlying host. A successful exploit could allow an attacker to execute arbitrary commands as root on the underlying operating system leading to complete system compromise.
Vulnerabilities in the ClearPass Policy Manager web-based management interface allow remote authenticated users to run arbitrary commands on the underlying host. A successful exploit could allow an attacker to execute arbitrary commands as root on the underlying operating system leading to complete system compromise.
Vulnerabilities in the ClearPass Policy Manager web-based management interface allow remote authenticated users to run arbitrary commands on the underlying host. A successful exploit could allow an attacker to execute arbitrary commands as root on the underlying operating system leading to complete system compromise.
A vulnerability in the web-based management interface of ClearPass Policy Manager could allow an authenticated remote attacker to conduct a stored cross-site scripting (XSS) attack against an administrative user of the interface. A successful exploit allows an attacker to execute arbitrary script code in a victim's browser in the context of the affected interface.
Any user can delete an arbitrary folder (recursively) on a remote server due to bad input sanitization leading to path traversal. The attacker would need access to the server at some privilege level since this endpoint is protected and requires authorization.
Vulnerabilities in the ClearPass Policy Manager web-based management interface allow remote authenticated users to run arbitrary commands on the underlying host. A successful exploit could allow an attacker to execute arbitrary commands as root on the underlying operating system leading to complete system compromise.
SQL Injection vulnerability in Likeshop before 2.5.7 allows attackers to run abitrary SQL commands via the function DistributionMemberLogic::getFansLists.
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Fix crash in qla2xxx_mqueuecommand()
RIP: 0010:kmem_cache_free+0xfa/0x1b0
Call Trace:
qla2xxx_mqueuecommand+0x2b5/0x2c0 [qla2xxx]
scsi_queue_rq+0x5e2/0xa40
__blk_mq_try_issue_directly+0x128/0x1d0
blk_mq_request_issue_directly+0x4e/0xb0
Fix incorrect call to free srb in qla2xxx_mqueuecommand(), as srb is now
allocated by upper layers. This fixes smatch warning of srb unintended
free.
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Reserve extra IRQ vectors
Commit a6dcfe08487e ("scsi: qla2xxx: Limit interrupt vectors to number of
CPUs") lowers the number of allocated MSI-X vectors to the number of CPUs.
That breaks vector allocation assumptions in qla83xx_iospace_config(),
qla24xx_enable_msix() and qla2x00_iospace_config(). Either of the functions
computes maximum number of qpairs as:
ha->max_qpairs = ha->msix_count - 1 (MB interrupt) - 1 (default
response queue) - 1 (ATIO, in dual or pure target mode)
max_qpairs is set to zero in case of two CPUs and initiator mode. The
number is then used to allocate ha->queue_pair_map inside
qla2x00_alloc_queues(). No allocation happens and ha->queue_pair_map is
left NULL but the driver thinks there are queue pairs available.
qla2xxx_queuecommand() tries to find a qpair in the map and crashes:
if (ha->mqenable) {
uint32_t tag;
uint16_t hwq;
struct qla_qpair *qpair = NULL;
tag = blk_mq_unique_tag(cmd->request);
hwq = blk_mq_unique_tag_to_hwq(tag);
qpair = ha->queue_pair_map[hwq]; # <- HERE
if (qpair)
return qla2xxx_mqueuecommand(host, cmd, qpair);
}
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] SMP PTI
CPU: 0 PID: 72 Comm: kworker/u4:3 Tainted: G W 5.10.0-rc1+ #25
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.0.0-prebuilt.qemu-project.org 04/01/2014
Workqueue: scsi_wq_7 fc_scsi_scan_rport [scsi_transport_fc]
RIP: 0010:qla2xxx_queuecommand+0x16b/0x3f0 [qla2xxx]
Call Trace:
scsi_queue_rq+0x58c/0xa60
blk_mq_dispatch_rq_list+0x2b7/0x6f0
? __sbitmap_get_word+0x2a/0x80
__blk_mq_sched_dispatch_requests+0xb8/0x170
blk_mq_sched_dispatch_requests+0x2b/0x50
__blk_mq_run_hw_queue+0x49/0xb0
__blk_mq_delay_run_hw_queue+0xfb/0x150
blk_mq_sched_insert_request+0xbe/0x110
blk_execute_rq+0x45/0x70
__scsi_execute+0x10e/0x250
scsi_probe_and_add_lun+0x228/0xda0
__scsi_scan_target+0xf4/0x620
? __pm_runtime_resume+0x4f/0x70
scsi_scan_target+0x100/0x110
fc_scsi_scan_rport+0xa1/0xb0 [scsi_transport_fc]
process_one_work+0x1ea/0x3b0
worker_thread+0x28/0x3b0
? process_one_work+0x3b0/0x3b0
kthread+0x112/0x130
? kthread_park+0x80/0x80
ret_from_fork+0x22/0x30
The driver should allocate enough vectors to provide every CPU it's own HW
queue and still handle reserved (MB, RSP, ATIO) interrupts.
The change fixes the crash on dual core VM and prevents unbalanced QP
allocation where nr_hw_queues is two less than the number of CPUs.
In the Linux kernel, the following vulnerability has been resolved:
mtd: physmap: physmap-bt1-rom: Fix unintentional stack access
Cast &data to (char *) in order to avoid unintentionally accessing
the stack.
Notice that data is of type u32, so any increment to &data
will be in the order of 4-byte chunks, and this piece of code
is actually intended to be a byte offset.
Addresses-Coverity-ID: 1497765 ("Out-of-bounds access")