Security Vulnerabilities
- CVEs Published In February 2024
In the Linux kernel, the following vulnerability has been resolved:
KVM: nVMX: Always make an attempt to map eVMCS after migration
When enlightened VMCS is in use and nested state is migrated with
vmx_get_nested_state()/vmx_set_nested_state() KVM can't map evmcs
page right away: evmcs gpa is not 'struct kvm_vmx_nested_state_hdr'
and we can't read it from VP assist page because userspace may decide
to restore HV_X64_MSR_VP_ASSIST_PAGE after restoring nested state
(and QEMU, for example, does exactly that). To make sure eVMCS is
mapped /vmx_set_nested_state() raises KVM_REQ_GET_NESTED_STATE_PAGES
request.
Commit f2c7ef3ba955 ("KVM: nSVM: cancel KVM_REQ_GET_NESTED_STATE_PAGES
on nested vmexit") added KVM_REQ_GET_NESTED_STATE_PAGES clearing to
nested_vmx_vmexit() to make sure MSR permission bitmap is not switched
when an immediate exit from L2 to L1 happens right after migration (caused
by a pending event, for example). Unfortunately, in the exact same
situation we still need to have eVMCS mapped so
nested_sync_vmcs12_to_shadow() reflects changes in VMCS12 to eVMCS.
As a band-aid, restore nested_get_evmcs_page() when clearing
KVM_REQ_GET_NESTED_STATE_PAGES in nested_vmx_vmexit(). The 'fix' is far
from being ideal as we can't easily propagate possible failures and even if
we could, this is most likely already too late to do so. The whole
'KVM_REQ_GET_NESTED_STATE_PAGES' idea for mapping eVMCS after migration
seems to be fragile as we diverge too much from the 'native' path when
vmptr loading happens on vmx_set_nested_state().
In the Linux kernel, the following vulnerability has been resolved:
iio: core: fix ioctl handlers removal
Currently ioctl handlers are removed twice. For the first time during
iio_device_unregister() then later on inside
iio_device_unregister_eventset() and iio_buffers_free_sysfs_and_mask().
Double free leads to kernel panic.
Fix this by not touching ioctl handlers list directly but rather
letting code responsible for registration call the matching cleanup
routine itself.
In the Linux kernel, the following vulnerability has been resolved:
usb: typec: ucsi: Retrieve all the PDOs instead of just the first 4
commit 4dbc6a4ef06d ("usb: typec: ucsi: save power data objects
in PD mode") introduced retrieval of the PDOs when connected to a
PD-capable source. But only the first 4 PDOs are received since
that is the maximum number that can be fetched at a time given the
MESSAGE_IN length limitation (16 bytes). However, as per the PD spec
a connected source may advertise up to a maximum of 7 PDOs.
If such a source is connected it's possible the PPM could have
negotiated a power contract with one of the PDOs at index greater
than 4, and would be reflected in the request data object's (RDO)
object position field. This would result in an out-of-bounds access
when the rdo_index() is used to index into the src_pdos array in
ucsi_psy_get_voltage_now().
With the help of the UBSAN -fsanitize=array-bounds checker enabled
this exact issue is revealed when connecting to a PD source adapter
that advertise 5 PDOs and the PPM enters a contract having selected
the 5th one.
[ 151.545106][ T70] Unexpected kernel BRK exception at EL1
[ 151.545112][ T70] Internal error: BRK handler: f2005512 [#1] PREEMPT SMP
...
[ 151.545499][ T70] pc : ucsi_psy_get_prop+0x208/0x20c
[ 151.545507][ T70] lr : power_supply_show_property+0xc0/0x328
...
[ 151.545542][ T70] Call trace:
[ 151.545544][ T70] ucsi_psy_get_prop+0x208/0x20c
[ 151.545546][ T70] power_supply_uevent+0x1a4/0x2f0
[ 151.545550][ T70] dev_uevent+0x200/0x384
[ 151.545555][ T70] kobject_uevent_env+0x1d4/0x7e8
[ 151.545557][ T70] power_supply_changed_work+0x174/0x31c
[ 151.545562][ T70] process_one_work+0x244/0x6f0
[ 151.545564][ T70] worker_thread+0x3e0/0xa64
We can resolve this by instead retrieving and storing up to the
maximum of 7 PDOs in the con->src_pdos array. This would involve
two calls to the GET_PDOS command.
In the Linux kernel, the following vulnerability has been resolved:
nbd: Fix NULL pointer in flush_workqueue
Open /dev/nbdX first, the config_refs will be 1 and
the pointers in nbd_device are still null. Disconnect
/dev/nbdX, then reference a null recv_workq. The
protection by config_refs in nbd_genl_disconnect is useless.
[ 656.366194] BUG: kernel NULL pointer dereference, address: 0000000000000020
[ 656.368943] #PF: supervisor write access in kernel mode
[ 656.369844] #PF: error_code(0x0002) - not-present page
[ 656.370717] PGD 10cc87067 P4D 10cc87067 PUD 1074b4067 PMD 0
[ 656.371693] Oops: 0002 [#1] SMP
[ 656.372242] CPU: 5 PID: 7977 Comm: nbd-client Not tainted 5.11.0-rc5-00040-g76c057c84d28 #1
[ 656.373661] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
[ 656.375904] RIP: 0010:mutex_lock+0x29/0x60
[ 656.376627] Code: 00 0f 1f 44 00 00 55 48 89 fd 48 83 05 6f d7 fe 08 01 e8 7a c3 ff ff 48 83 05 6a d7 fe 08 01 31 c0 65 48 8b 14 25 00 6d 01 00 <f0> 48 0f b1 55 d
[ 656.378934] RSP: 0018:ffffc900005eb9b0 EFLAGS: 00010246
[ 656.379350] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
[ 656.379915] RDX: ffff888104cf2600 RSI: ffffffffaae8f452 RDI: 0000000000000020
[ 656.380473] RBP: 0000000000000020 R08: 0000000000000000 R09: ffff88813bd6b318
[ 656.381039] R10: 00000000000000c7 R11: fefefefefefefeff R12: ffff888102710b40
[ 656.381599] R13: ffffc900005eb9e0 R14: ffffffffb2930680 R15: ffff88810770ef00
[ 656.382166] FS: 00007fdf117ebb40(0000) GS:ffff88813bd40000(0000) knlGS:0000000000000000
[ 656.382806] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 656.383261] CR2: 0000000000000020 CR3: 0000000100c84000 CR4: 00000000000006e0
[ 656.383819] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 656.384370] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 656.384927] Call Trace:
[ 656.385111] flush_workqueue+0x92/0x6c0
[ 656.385395] nbd_disconnect_and_put+0x81/0xd0
[ 656.385716] nbd_genl_disconnect+0x125/0x2a0
[ 656.386034] genl_family_rcv_msg_doit.isra.0+0x102/0x1b0
[ 656.386422] genl_rcv_msg+0xfc/0x2b0
[ 656.386685] ? nbd_ioctl+0x490/0x490
[ 656.386954] ? genl_family_rcv_msg_doit.isra.0+0x1b0/0x1b0
[ 656.387354] netlink_rcv_skb+0x62/0x180
[ 656.387638] genl_rcv+0x34/0x60
[ 656.387874] netlink_unicast+0x26d/0x590
[ 656.388162] netlink_sendmsg+0x398/0x6c0
[ 656.388451] ? netlink_rcv_skb+0x180/0x180
[ 656.388750] ____sys_sendmsg+0x1da/0x320
[ 656.389038] ? ____sys_recvmsg+0x130/0x220
[ 656.389334] ___sys_sendmsg+0x8e/0xf0
[ 656.389605] ? ___sys_recvmsg+0xa2/0xf0
[ 656.389889] ? handle_mm_fault+0x1671/0x21d0
[ 656.390201] __sys_sendmsg+0x6d/0xe0
[ 656.390464] __x64_sys_sendmsg+0x23/0x30
[ 656.390751] do_syscall_64+0x45/0x70
[ 656.391017] entry_SYSCALL_64_after_hwframe+0x44/0xa9
To fix it, just add if (nbd->recv_workq) to nbd_disconnect_and_put().
In the Linux kernel, the following vulnerability has been resolved:
f2fs: compress: fix race condition of overwrite vs truncate
pos_fsstress testcase complains a panic as belew:
------------[ cut here ]------------
kernel BUG at fs/f2fs/compress.c:1082!
invalid opcode: 0000 [#1] SMP PTI
CPU: 4 PID: 2753477 Comm: kworker/u16:2 Tainted: G OE 5.12.0-rc1-custom #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014
Workqueue: writeback wb_workfn (flush-252:16)
RIP: 0010:prepare_compress_overwrite+0x4c0/0x760 [f2fs]
Call Trace:
f2fs_prepare_compress_overwrite+0x5f/0x80 [f2fs]
f2fs_write_cache_pages+0x468/0x8a0 [f2fs]
f2fs_write_data_pages+0x2a4/0x2f0 [f2fs]
do_writepages+0x38/0xc0
__writeback_single_inode+0x44/0x2a0
writeback_sb_inodes+0x223/0x4d0
__writeback_inodes_wb+0x56/0xf0
wb_writeback+0x1dd/0x290
wb_workfn+0x309/0x500
process_one_work+0x220/0x3c0
worker_thread+0x53/0x420
kthread+0x12f/0x150
ret_from_fork+0x22/0x30
The root cause is truncate() may race with overwrite as below,
so that one reference count left in page can not guarantee the
page attaching in mapping tree all the time, after truncation,
later find_lock_page() may return NULL pointer.
- prepare_compress_overwrite
- f2fs_pagecache_get_page
- unlock_page
- f2fs_setattr
- truncate_setsize
- truncate_inode_page
- delete_from_page_cache
- find_lock_page
Fix this by avoiding referencing updated page.
In the Linux kernel, the following vulnerability has been resolved:
nvmet-rdma: Fix NULL deref when SEND is completed with error
When running some traffic and taking down the link on peer, a
retry counter exceeded error is received. This leads to
nvmet_rdma_error_comp which tried accessing the cq_context to
obtain the queue. The cq_context is no longer valid after the
fix to use shared CQ mechanism and should be obtained similar
to how it is obtained in other functions from the wc->qp.
[ 905.786331] nvmet_rdma: SEND for CQE 0x00000000e3337f90 failed with status transport retry counter exceeded (12).
[ 905.832048] BUG: unable to handle kernel NULL pointer dereference at 0000000000000048
[ 905.839919] PGD 0 P4D 0
[ 905.842464] Oops: 0000 1 SMP NOPTI
[ 905.846144] CPU: 13 PID: 1557 Comm: kworker/13:1H Kdump: loaded Tainted: G OE --------- - - 4.18.0-304.el8.x86_64 #1
[ 905.872135] RIP: 0010:nvmet_rdma_error_comp+0x5/0x1b [nvmet_rdma]
[ 905.878259] Code: 19 4f c0 e8 89 b3 a5 f6 e9 5b e0 ff ff 0f b7 75 14 4c 89 ea 48 c7 c7 08 1a 4f c0 e8 71 b3 a5 f6 e9 4b e0 ff ff 0f 1f 44 00 00 <48> 8b 47 48 48 85 c0 74 08 48 89 c7 e9 98 bf 49 00 e9 c3 e3 ff ff
[ 905.897135] RSP: 0018:ffffab601c45fe28 EFLAGS: 00010246
[ 905.902387] RAX: 0000000000000065 RBX: ffff9e729ea2f800 RCX: 0000000000000000
[ 905.909558] RDX: 0000000000000000 RSI: ffff9e72df9567c8 RDI: 0000000000000000
[ 905.916731] RBP: ffff9e729ea2b400 R08: 000000000000074d R09: 0000000000000074
[ 905.923903] R10: 0000000000000000 R11: ffffab601c45fcc0 R12: 0000000000000010
[ 905.931074] R13: 0000000000000000 R14: 0000000000000010 R15: ffff9e729ea2f400
[ 905.938247] FS: 0000000000000000(0000) GS:ffff9e72df940000(0000) knlGS:0000000000000000
[ 905.938249] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 905.950067] nvmet_rdma: SEND for CQE 0x00000000c7356cca failed with status transport retry counter exceeded (12).
[ 905.961855] CR2: 0000000000000048 CR3: 000000678d010004 CR4: 00000000007706e0
[ 905.961855] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 905.961856] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 905.961857] PKRU: 55555554
[ 906.010315] Call Trace:
[ 906.012778] __ib_process_cq+0x89/0x170 [ib_core]
[ 906.017509] ib_cq_poll_work+0x26/0x80 [ib_core]
[ 906.022152] process_one_work+0x1a7/0x360
[ 906.026182] ? create_worker+0x1a0/0x1a0
[ 906.030123] worker_thread+0x30/0x390
[ 906.033802] ? create_worker+0x1a0/0x1a0
[ 906.037744] kthread+0x116/0x130
[ 906.040988] ? kthread_flush_work_fn+0x10/0x10
[ 906.045456] ret_from_fork+0x1f/0x40
In the Linux kernel, the following vulnerability has been resolved:
kyber: fix out of bounds access when preempted
__blk_mq_sched_bio_merge() gets the ctx and hctx for the current CPU and
passes the hctx to ->bio_merge(). kyber_bio_merge() then gets the ctx
for the current CPU again and uses that to get the corresponding Kyber
context in the passed hctx. However, the thread may be preempted between
the two calls to blk_mq_get_ctx(), and the ctx returned the second time
may no longer correspond to the passed hctx. This "works" accidentally
most of the time, but it can cause us to read garbage if the second ctx
came from an hctx with more ctx's than the first one (i.e., if
ctx->index_hw[hctx->type] > hctx->nr_ctx).
This manifested as this UBSAN array index out of bounds error reported
by Jakub:
UBSAN: array-index-out-of-bounds in ../kernel/locking/qspinlock.c:130:9
index 13106 is out of range for type 'long unsigned int [128]'
Call Trace:
dump_stack+0xa4/0xe5
ubsan_epilogue+0x5/0x40
__ubsan_handle_out_of_bounds.cold.13+0x2a/0x34
queued_spin_lock_slowpath+0x476/0x480
do_raw_spin_lock+0x1c2/0x1d0
kyber_bio_merge+0x112/0x180
blk_mq_submit_bio+0x1f5/0x1100
submit_bio_noacct+0x7b0/0x870
submit_bio+0xc2/0x3a0
btrfs_map_bio+0x4f0/0x9d0
btrfs_submit_data_bio+0x24e/0x310
submit_one_bio+0x7f/0xb0
submit_extent_page+0xc4/0x440
__extent_writepage_io+0x2b8/0x5e0
__extent_writepage+0x28d/0x6e0
extent_write_cache_pages+0x4d7/0x7a0
extent_writepages+0xa2/0x110
do_writepages+0x8f/0x180
__writeback_single_inode+0x99/0x7f0
writeback_sb_inodes+0x34e/0x790
__writeback_inodes_wb+0x9e/0x120
wb_writeback+0x4d2/0x660
wb_workfn+0x64d/0xa10
process_one_work+0x53a/0xa80
worker_thread+0x69/0x5b0
kthread+0x20b/0x240
ret_from_fork+0x1f/0x30
Only Kyber uses the hctx, so fix it by passing the request_queue to
->bio_merge() instead. BFQ and mq-deadline just use that, and Kyber can
map the queues itself to avoid the mismatch.
In the Linux kernel, the following vulnerability has been resolved:
ACPI: scan: Fix a memory leak in an error handling path
If 'acpi_device_set_name()' fails, we must free
'acpi_device_bus_id->bus_id' or there is a (potential) memory leak.
In the Linux kernel, the following vulnerability has been resolved:
usb: dwc3: gadget: Free gadget structure only after freeing endpoints
As part of commit e81a7018d93a ("usb: dwc3: allocate gadget structure
dynamically") the dwc3_gadget_release() was added which will free
the dwc->gadget structure upon the device's removal when
usb_del_gadget_udc() is called in dwc3_gadget_exit().
However, simply freeing the gadget results a dangling pointer
situation: the endpoints created in dwc3_gadget_init_endpoints()
have their dep->endpoint.ep_list members chained off the list_head
anchored at dwc->gadget->ep_list. Thus when dwc->gadget is freed,
the first dwc3_ep in the list now has a dangling prev pointer and
likewise for the next pointer of the dwc3_ep at the tail of the list.
The dwc3_gadget_free_endpoints() that follows will result in a
use-after-free when it calls list_del().
This was caught by enabling KASAN and performing a driver unbind.
The recent commit 568262bf5492 ("usb: dwc3: core: Add shutdown
callback for dwc3") also exposes this as a panic during shutdown.
There are a few possibilities to fix this. One could be to perform
a list_del() of the gadget->ep_list itself which removes it from
the rest of the dwc3_ep chain.
Another approach is what this patch does, by splitting up the
usb_del_gadget_udc() call into its separate "del" and "put"
components. This allows dwc3_gadget_free_endpoints() to be
called before the gadget is finally freed with usb_put_gadget().
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix deadlock when cloning inline extents and using qgroups
There are a few exceptional cases where cloning an inline extent needs to
copy the inline extent data into a page of the destination inode.
When this happens, we end up starting a transaction while having a dirty
page for the destination inode and while having the range locked in the
destination's inode iotree too. Because when reserving metadata space
for a transaction we may need to flush existing delalloc in case there is
not enough free space, we have a mechanism in place to prevent a deadlock,
which was introduced in commit 3d45f221ce627d ("btrfs: fix deadlock when
cloning inline extent and low on free metadata space").
However when using qgroups, a transaction also reserves metadata qgroup
space, which can also result in flushing delalloc in case there is not
enough available space at the moment. When this happens we deadlock, since
flushing delalloc requires locking the file range in the inode's iotree
and the range was already locked at the very beginning of the clone
operation, before attempting to start the transaction.
When this issue happens, stack traces like the following are reported:
[72747.556262] task:kworker/u81:9 state:D stack: 0 pid: 225 ppid: 2 flags:0x00004000
[72747.556268] Workqueue: writeback wb_workfn (flush-btrfs-1142)
[72747.556271] Call Trace:
[72747.556273] __schedule+0x296/0x760
[72747.556277] schedule+0x3c/0xa0
[72747.556279] io_schedule+0x12/0x40
[72747.556284] __lock_page+0x13c/0x280
[72747.556287] ? generic_file_readonly_mmap+0x70/0x70
[72747.556325] extent_write_cache_pages+0x22a/0x440 [btrfs]
[72747.556331] ? __set_page_dirty_nobuffers+0xe7/0x160
[72747.556358] ? set_extent_buffer_dirty+0x5e/0x80 [btrfs]
[72747.556362] ? update_group_capacity+0x25/0x210
[72747.556366] ? cpumask_next_and+0x1a/0x20
[72747.556391] extent_writepages+0x44/0xa0 [btrfs]
[72747.556394] do_writepages+0x41/0xd0
[72747.556398] __writeback_single_inode+0x39/0x2a0
[72747.556403] writeback_sb_inodes+0x1ea/0x440
[72747.556407] __writeback_inodes_wb+0x5f/0xc0
[72747.556410] wb_writeback+0x235/0x2b0
[72747.556414] ? get_nr_inodes+0x35/0x50
[72747.556417] wb_workfn+0x354/0x490
[72747.556420] ? newidle_balance+0x2c5/0x3e0
[72747.556424] process_one_work+0x1aa/0x340
[72747.556426] worker_thread+0x30/0x390
[72747.556429] ? create_worker+0x1a0/0x1a0
[72747.556432] kthread+0x116/0x130
[72747.556435] ? kthread_park+0x80/0x80
[72747.556438] ret_from_fork+0x1f/0x30
[72747.566958] Workqueue: btrfs-flush_delalloc btrfs_work_helper [btrfs]
[72747.566961] Call Trace:
[72747.566964] __schedule+0x296/0x760
[72747.566968] ? finish_wait+0x80/0x80
[72747.566970] schedule+0x3c/0xa0
[72747.566995] wait_extent_bit.constprop.68+0x13b/0x1c0 [btrfs]
[72747.566999] ? finish_wait+0x80/0x80
[72747.567024] lock_extent_bits+0x37/0x90 [btrfs]
[72747.567047] btrfs_invalidatepage+0x299/0x2c0 [btrfs]
[72747.567051] ? find_get_pages_range_tag+0x2cd/0x380
[72747.567076] __extent_writepage+0x203/0x320 [btrfs]
[72747.567102] extent_write_cache_pages+0x2bb/0x440 [btrfs]
[72747.567106] ? update_load_avg+0x7e/0x5f0
[72747.567109] ? enqueue_entity+0xf4/0x6f0
[72747.567134] extent_writepages+0x44/0xa0 [btrfs]
[72747.567137] ? enqueue_task_fair+0x93/0x6f0
[72747.567140] do_writepages+0x41/0xd0
[72747.567144] __filemap_fdatawrite_range+0xc7/0x100
[72747.567167] btrfs_run_delalloc_work+0x17/0x40 [btrfs]
[72747.567195] btrfs_work_helper+0xc2/0x300 [btrfs]
[72747.567200] process_one_work+0x1aa/0x340
[72747.567202] worker_thread+0x30/0x390
[72747.567205] ? create_worker+0x1a0/0x1a0
[72747.567208] kthread+0x116/0x130
[72747.567211] ? kthread_park+0x80/0x80
[72747.567214] ret_from_fork+0x1f/0x30
[72747.569686] task:fsstress state:D stack:
---truncated---