Security Vulnerabilities
- CVEs Published In February 2024
In the Linux kernel, the following vulnerability has been resolved:
ceph: fix inode leak on getattr error in __fh_to_dentry
In the Linux kernel, the following vulnerability has been resolved:
xprtrdma: Fix cwnd update ordering
After a reconnect, the reply handler is opening the cwnd (and thus
enabling more RPC Calls to be sent) /before/ rpcrdma_post_recvs()
can post enough Receive WRs to receive their replies. This causes an
RNR and the new connection is lost immediately.
The race is most clearly exposed when KASAN and disconnect injection
are enabled. This slows down rpcrdma_rep_create() enough to allow
the send side to post a bunch of RPC Calls before the Receive
completion handler can invoke ib_post_recv().
In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: Fix null pointer dereference in svc_rqst_free()
When alloc_pages_node() returns null in svc_rqst_alloc(), the
null rq_scratch_page pointer will be dereferenced when calling
put_page() in svc_rqst_free(). Fix it by adding a null check.
Addresses-Coverity: ("Dereference after null check")
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: idxd: Fix potential null dereference on pointer status
There are calls to idxd_cmd_exec that pass a null status pointer however
a recent commit has added an assignment to *status that can end up
with a null pointer dereference. The function expects a null status
pointer sometimes as there is a later assignment to *status where
status is first null checked. Fix the issue by null checking status
before making the assignment.
Addresses-Coverity: ("Explicit null dereferenced")
In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to avoid touching checkpointed data in get_victim()
In CP disabling mode, there are two issues when using LFS or SSR | AT_SSR
mode to select victim:
1. LFS is set to find source section during GC, the victim should have
no checkpointed data, since after GC, section could not be set free for
reuse.
Previously, we only check valid chpt blocks in current segment rather
than section, fix it.
2. SSR | AT_SSR are set to find target segment for writes which can be
fully filled by checkpointed and newly written blocks, we should never
select such segment, otherwise it can cause panic or data corruption
during allocation, potential case is described as below:
a) target segment has 'n' (n < 512) ckpt valid blocks
b) GC migrates 'n' valid blocks to other segment (segment is still
in dirty list)
c) GC migrates '512 - n' blocks to target segment (segment has 'n'
cp_vblocks and '512 - n' vblocks)
d) If GC selects target segment via {AT,}SSR allocator, however there
is no free space in targe segment.
In the Linux kernel, the following vulnerability has been resolved:
PCI: endpoint: Fix NULL pointer dereference for ->get_features()
get_features ops of pci_epc_ops may return NULL, causing NULL pointer
dereference in pci_epf_test_alloc_space function. Let us add a check for
pci_epc_feature pointer in pci_epf_test_bind before we access it to avoid
any such NULL pointer dereference and return -ENOTSUPP in case
pci_epc_feature is not found.
When the patch is not applied and EPC features is not implemented in the
platform driver, we see the following dump due to kernel NULL pointer
dereference.
Call trace:
pci_epf_test_bind+0xf4/0x388
pci_epf_bind+0x3c/0x80
pci_epc_epf_link+0xa8/0xcc
configfs_symlink+0x1a4/0x48c
vfs_symlink+0x104/0x184
do_symlinkat+0x80/0xd4
__arm64_sys_symlinkat+0x1c/0x24
el0_svc_common.constprop.3+0xb8/0x170
el0_svc_handler+0x70/0x88
el0_svc+0x8/0x640
Code: d2800581 b9403ab9 f9404ebb 8b394f60 (f9400400)
---[ end trace a438e3c5a24f9df0 ]---
In the Linux kernel, the following vulnerability has been resolved:
ARM: 9064/1: hw_breakpoint: Do not directly check the event's overflow_handler hook
The commit 1879445dfa7b ("perf/core: Set event's default
::overflow_handler()") set a default event->overflow_handler in
perf_event_alloc(), and replace the check event->overflow_handler with
is_default_overflow_handler(), but one is missing.
Currently, the bp->overflow_handler can not be NULL. As a result,
enable_single_step() is always not invoked.
Comments from Zhen Lei:
https://patchwork.kernel.org/project/linux-arm-kernel/patch/20210207105934.2001-1-thunder.leizhen@huawei.com/
In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix panic during f2fs_resize_fs()
f2fs_resize_fs() hangs in below callstack with testcase:
- mkfs 16GB image & mount image
- dd 8GB fileA
- dd 8GB fileB
- sync
- rm fileA
- sync
- resize filesystem to 8GB
kernel BUG at segment.c:2484!
Call Trace:
allocate_segment_by_default+0x92/0xf0 [f2fs]
f2fs_allocate_data_block+0x44b/0x7e0 [f2fs]
do_write_page+0x5a/0x110 [f2fs]
f2fs_outplace_write_data+0x55/0x100 [f2fs]
f2fs_do_write_data_page+0x392/0x850 [f2fs]
move_data_page+0x233/0x320 [f2fs]
do_garbage_collect+0x14d9/0x1660 [f2fs]
free_segment_range+0x1f7/0x310 [f2fs]
f2fs_resize_fs+0x118/0x330 [f2fs]
__f2fs_ioctl+0x487/0x3680 [f2fs]
__x64_sys_ioctl+0x8e/0xd0
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
The root cause is we forgot to check that whether we have enough space
in resized filesystem to store all valid blocks in before-resizing
filesystem, then allocator will run out-of-space during block migration
in free_segment_range().
In the Linux kernel, the following vulnerability has been resolved:
KVM: SVM: Make sure GHCB is mapped before updating
Access to the GHCB is mainly in the VMGEXIT path and it is known that the
GHCB will be mapped. But there are two paths where it is possible the GHCB
might not be mapped.
The sev_vcpu_deliver_sipi_vector() routine will update the GHCB to inform
the caller of the AP Reset Hold NAE event that a SIPI has been delivered.
However, if a SIPI is performed without a corresponding AP Reset Hold,
then the GHCB might not be mapped (depending on the previous VMEXIT),
which will result in a NULL pointer dereference.
The svm_complete_emulated_msr() routine will update the GHCB to inform
the caller of a RDMSR/WRMSR operation about any errors. While it is likely
that the GHCB will be mapped in this situation, add a safe guard
in this path to be certain a NULL pointer dereference is not encountered.
In the Linux kernel, the following vulnerability has been resolved:
KEYS: trusted: Fix memory leak on object td
Two error return paths are neglecting to free allocated object td,
causing a memory leak. Fix this by returning via the error return
path that securely kfree's td.
Fixes clang scan-build warning:
security/keys/trusted-keys/trusted_tpm1.c:496:10: warning: Potential
memory leak [unix.Malloc]