Security Vulnerabilities
- CVEs Published In February 2024
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nftables: Fix a memleak from userdata error path in new objects
Release object name if userdata allocation fails.
In the Linux kernel, the following vulnerability has been resolved:
arm64: entry: always set GIC_PRIO_PSR_I_SET during entry
Zenghui reports that booting a kernel with "irqchip.gicv3_pseudo_nmi=1"
on the command line hits a warning during kernel entry, due to the way
we manipulate the PMR.
Early in the entry sequence, we call lockdep_hardirqs_off() to inform
lockdep that interrupts have been masked (as the HW sets DAIF wqhen
entering an exception). Architecturally PMR_EL1 is not affected by
exception entry, and we don't set GIC_PRIO_PSR_I_SET in the PMR early in
the exception entry sequence, so early in exception entry the PMR can
indicate that interrupts are unmasked even though they are masked by
DAIF.
If DEBUG_LOCKDEP is selected, lockdep_hardirqs_off() will check that
interrupts are masked, before we set GIC_PRIO_PSR_I_SET in any of the
exception entry paths, and hence lockdep_hardirqs_off() will WARN() that
something is amiss.
We can avoid this by consistently setting GIC_PRIO_PSR_I_SET during
exception entry so that kernel code sees a consistent environment. We
must also update local_daif_inherit() to undo this, as currently only
touches DAIF. For other paths, local_daif_restore() will update both
DAIF and the PMR. With this done, we can remove the existing special
cases which set this later in the entry code.
We always use (GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET) for consistency with
local_daif_save(), as this will warn if it ever encounters
(GIC_PRIO_IRQOFF | GIC_PRIO_PSR_I_SET), and never sets this itself. This
matches the gic_prio_kentry_setup that we have to retain for
ret_to_user.
The original splat from Zenghui's report was:
| DEBUG_LOCKS_WARN_ON(!irqs_disabled())
| WARNING: CPU: 3 PID: 125 at kernel/locking/lockdep.c:4258 lockdep_hardirqs_off+0xd4/0xe8
| Modules linked in:
| CPU: 3 PID: 125 Comm: modprobe Tainted: G W 5.12.0-rc8+ #463
| Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
| pstate: 604003c5 (nZCv DAIF +PAN -UAO -TCO BTYPE=--)
| pc : lockdep_hardirqs_off+0xd4/0xe8
| lr : lockdep_hardirqs_off+0xd4/0xe8
| sp : ffff80002a39bad0
| pmr_save: 000000e0
| x29: ffff80002a39bad0 x28: ffff0000de214bc0
| x27: ffff0000de1c0400 x26: 000000000049b328
| x25: 0000000000406f30 x24: ffff0000de1c00a0
| x23: 0000000020400005 x22: ffff8000105f747c
| x21: 0000000096000044 x20: 0000000000498ef9
| x19: ffff80002a39bc88 x18: ffffffffffffffff
| x17: 0000000000000000 x16: ffff800011c61eb0
| x15: ffff800011700a88 x14: 0720072007200720
| x13: 0720072007200720 x12: 0720072007200720
| x11: 0720072007200720 x10: 0720072007200720
| x9 : ffff80002a39bad0 x8 : ffff80002a39bad0
| x7 : ffff8000119f0800 x6 : c0000000ffff7fff
| x5 : ffff8000119f07a8 x4 : 0000000000000001
| x3 : 9bcdab23f2432800 x2 : ffff800011730538
| x1 : 9bcdab23f2432800 x0 : 0000000000000000
| Call trace:
| lockdep_hardirqs_off+0xd4/0xe8
| enter_from_kernel_mode.isra.5+0x7c/0xa8
| el1_abort+0x24/0x100
| el1_sync_handler+0x80/0xd0
| el1_sync+0x6c/0x100
| __arch_clear_user+0xc/0x90
| load_elf_binary+0x9fc/0x1450
| bprm_execve+0x404/0x880
| kernel_execve+0x180/0x188
| call_usermodehelper_exec_async+0xdc/0x158
| ret_from_fork+0x10/0x18
In the Linux kernel, the following vulnerability has been resolved:
ethernet:enic: Fix a use after free bug in enic_hard_start_xmit
In enic_hard_start_xmit, it calls enic_queue_wq_skb(). Inside
enic_queue_wq_skb, if some error happens, the skb will be freed
by dev_kfree_skb(skb). But the freed skb is still used in
skb_tx_timestamp(skb).
My patch makes enic_queue_wq_skb() return error and goto spin_unlock()
incase of error. The solution is provided by Govind.
See https://lkml.org/lkml/2021/4/30/961.
In the Linux kernel, the following vulnerability has been resolved:
sctp: do asoc update earlier in sctp_sf_do_dupcook_a
There's a panic that occurs in a few of envs, the call trace is as below:
[] general protection fault, ... 0x29acd70f1000a: 0000 [#1] SMP PTI
[] RIP: 0010:sctp_ulpevent_notify_peer_addr_change+0x4b/0x1fa [sctp]
[] sctp_assoc_control_transport+0x1b9/0x210 [sctp]
[] sctp_do_8_2_transport_strike.isra.16+0x15c/0x220 [sctp]
[] sctp_cmd_interpreter.isra.21+0x1231/0x1a10 [sctp]
[] sctp_do_sm+0xc3/0x2a0 [sctp]
[] sctp_generate_timeout_event+0x81/0xf0 [sctp]
This is caused by a transport use-after-free issue. When processing a
duplicate COOKIE-ECHO chunk in sctp_sf_do_dupcook_a(), both COOKIE-ACK
and SHUTDOWN chunks are allocated with the transort from the new asoc.
However, later in the sideeffect machine, the old asoc is used to send
them out and old asoc's shutdown_last_sent_to is set to the transport
that SHUTDOWN chunk attached to in sctp_cmd_setup_t2(), which actually
belongs to the new asoc. After the new_asoc is freed and the old asoc
T2 timeout, the old asoc's shutdown_last_sent_to that is already freed
would be accessed in sctp_sf_t2_timer_expire().
Thanks Alexander and Jere for helping dig into this issue.
To fix it, this patch is to do the asoc update first, then allocate
the COOKIE-ACK and SHUTDOWN chunks with the 'updated' old asoc. This
would make more sense, as a chunk from an asoc shouldn't be sent out
with another asoc. We had fixed quite a few issues caused by this.
In the Linux kernel, the following vulnerability has been resolved:
ceph: fix inode leak on getattr error in __fh_to_dentry
In the Linux kernel, the following vulnerability has been resolved:
xprtrdma: Fix cwnd update ordering
After a reconnect, the reply handler is opening the cwnd (and thus
enabling more RPC Calls to be sent) /before/ rpcrdma_post_recvs()
can post enough Receive WRs to receive their replies. This causes an
RNR and the new connection is lost immediately.
The race is most clearly exposed when KASAN and disconnect injection
are enabled. This slows down rpcrdma_rep_create() enough to allow
the send side to post a bunch of RPC Calls before the Receive
completion handler can invoke ib_post_recv().
In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: Fix null pointer dereference in svc_rqst_free()
When alloc_pages_node() returns null in svc_rqst_alloc(), the
null rq_scratch_page pointer will be dereferenced when calling
put_page() in svc_rqst_free(). Fix it by adding a null check.
Addresses-Coverity: ("Dereference after null check")
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: idxd: Fix potential null dereference on pointer status
There are calls to idxd_cmd_exec that pass a null status pointer however
a recent commit has added an assignment to *status that can end up
with a null pointer dereference. The function expects a null status
pointer sometimes as there is a later assignment to *status where
status is first null checked. Fix the issue by null checking status
before making the assignment.
Addresses-Coverity: ("Explicit null dereferenced")
In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to avoid touching checkpointed data in get_victim()
In CP disabling mode, there are two issues when using LFS or SSR | AT_SSR
mode to select victim:
1. LFS is set to find source section during GC, the victim should have
no checkpointed data, since after GC, section could not be set free for
reuse.
Previously, we only check valid chpt blocks in current segment rather
than section, fix it.
2. SSR | AT_SSR are set to find target segment for writes which can be
fully filled by checkpointed and newly written blocks, we should never
select such segment, otherwise it can cause panic or data corruption
during allocation, potential case is described as below:
a) target segment has 'n' (n < 512) ckpt valid blocks
b) GC migrates 'n' valid blocks to other segment (segment is still
in dirty list)
c) GC migrates '512 - n' blocks to target segment (segment has 'n'
cp_vblocks and '512 - n' vblocks)
d) If GC selects target segment via {AT,}SSR allocator, however there
is no free space in targe segment.
In the Linux kernel, the following vulnerability has been resolved:
PCI: endpoint: Fix NULL pointer dereference for ->get_features()
get_features ops of pci_epc_ops may return NULL, causing NULL pointer
dereference in pci_epf_test_alloc_space function. Let us add a check for
pci_epc_feature pointer in pci_epf_test_bind before we access it to avoid
any such NULL pointer dereference and return -ENOTSUPP in case
pci_epc_feature is not found.
When the patch is not applied and EPC features is not implemented in the
platform driver, we see the following dump due to kernel NULL pointer
dereference.
Call trace:
pci_epf_test_bind+0xf4/0x388
pci_epf_bind+0x3c/0x80
pci_epc_epf_link+0xa8/0xcc
configfs_symlink+0x1a4/0x48c
vfs_symlink+0x104/0x184
do_symlinkat+0x80/0xd4
__arm64_sys_symlinkat+0x1c/0x24
el0_svc_common.constprop.3+0xb8/0x170
el0_svc_handler+0x70/0x88
el0_svc+0x8/0x640
Code: d2800581 b9403ab9 f9404ebb 8b394f60 (f9400400)
---[ end trace a438e3c5a24f9df0 ]---