Security Vulnerabilities
- CVEs Published In February 2025
In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Move cfg_log_verbose check before calling lpfc_dmp_dbg()
In an attempt to log message 0126 with LOG_TRACE_EVENT, the following hard
lockup call trace hangs the system.
Call Trace:
_raw_spin_lock_irqsave+0x32/0x40
lpfc_dmp_dbg.part.32+0x28/0x220 [lpfc]
lpfc_cmpl_els_fdisc+0x145/0x460 [lpfc]
lpfc_sli_cancel_jobs+0x92/0xd0 [lpfc]
lpfc_els_flush_cmd+0x43c/0x670 [lpfc]
lpfc_els_flush_all_cmd+0x37/0x60 [lpfc]
lpfc_sli4_async_event_proc+0x956/0x1720 [lpfc]
lpfc_do_work+0x1485/0x1d70 [lpfc]
kthread+0x112/0x130
ret_from_fork+0x1f/0x40
Kernel panic - not syncing: Hard LOCKUP
The same CPU tries to claim the phba->port_list_lock twice.
Move the cfg_log_verbose checks as part of the lpfc_printf_vlog() and
lpfc_printf_log() macros before calling lpfc_dmp_dbg(). There is no need
to take the phba->port_list_lock within lpfc_dmp_dbg().
In the Linux kernel, the following vulnerability has been resolved:
ipw2x00: Fix potential NULL dereference in libipw_xmit()
crypt and crypt->ops could be null, so we need to checking null
before dereference
In the Linux kernel, the following vulnerability has been resolved:
x86/kexec: fix memory leak of elf header buffer
This is reported by kmemleak detector:
unreferenced object 0xffffc900002a9000 (size 4096):
comm "kexec", pid 14950, jiffies 4295110793 (age 373.951s)
hex dump (first 32 bytes):
7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 .ELF............
04 00 3e 00 01 00 00 00 00 00 00 00 00 00 00 00 ..>.............
backtrace:
[<0000000016a8ef9f>] __vmalloc_node_range+0x101/0x170
[<000000002b66b6c0>] __vmalloc_node+0xb4/0x160
[<00000000ad40107d>] crash_prepare_elf64_headers+0x8e/0xcd0
[<0000000019afff23>] crash_load_segments+0x260/0x470
[<0000000019ebe95c>] bzImage64_load+0x814/0xad0
[<0000000093e16b05>] arch_kexec_kernel_image_load+0x1be/0x2a0
[<000000009ef2fc88>] kimage_file_alloc_init+0x2ec/0x5a0
[<0000000038f5a97a>] __do_sys_kexec_file_load+0x28d/0x530
[<0000000087c19992>] do_syscall_64+0x3b/0x90
[<0000000066e063a4>] entry_SYSCALL_64_after_hwframe+0x44/0xae
In crash_prepare_elf64_headers(), a buffer is allocated via vmalloc() to
store elf headers. While it's not freed back to system correctly when
kdump kernel is reloaded or unloaded. Then memory leak is caused. Fix it
by introducing x86 specific function arch_kimage_file_post_load_cleanup(),
and freeing the buffer there.
And also remove the incorrect elf header buffer freeing code. Before
calling arch specific kexec_file loading function, the image instance has
been initialized. So 'image->elf_headers' must be NULL. It doesn't make
sense to free the elf header buffer in the place.
Three different people have reported three bugs about the memory leak on
x86_64 inside Redhat.
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix deadlock between concurrent dio writes when low on free data space
When reserving data space for a direct IO write we can end up deadlocking
if we have multiple tasks attempting a write to the same file range, there
are multiple extents covered by that file range, we are low on available
space for data and the writes don't expand the inode's i_size.
The deadlock can happen like this:
1) We have a file with an i_size of 1M, at offset 0 it has an extent with
a size of 128K and at offset 128K it has another extent also with a
size of 128K;
2) Task A does a direct IO write against file range [0, 256K), and because
the write is within the i_size boundary, it takes the inode's lock (VFS
level) in shared mode;
3) Task A locks the file range [0, 256K) at btrfs_dio_iomap_begin(), and
then gets the extent map for the extent covering the range [0, 128K).
At btrfs_get_blocks_direct_write(), it creates an ordered extent for
that file range ([0, 128K));
4) Before returning from btrfs_dio_iomap_begin(), it unlocks the file
range [0, 256K);
5) Task A executes btrfs_dio_iomap_begin() again, this time for the file
range [128K, 256K), and locks the file range [128K, 256K);
6) Task B starts a direct IO write against file range [0, 256K) as well.
It also locks the inode in shared mode, as it's within the i_size limit,
and then tries to lock file range [0, 256K). It is able to lock the
subrange [0, 128K) but then blocks waiting for the range [128K, 256K),
as it is currently locked by task A;
7) Task A enters btrfs_get_blocks_direct_write() and tries to reserve data
space. Because we are low on available free space, it triggers the
async data reclaim task, and waits for it to reserve data space;
8) The async reclaim task decides to wait for all existing ordered extents
to complete (through btrfs_wait_ordered_roots()).
It finds the ordered extent previously created by task A for the file
range [0, 128K) and waits for it to complete;
9) The ordered extent for the file range [0, 128K) can not complete
because it blocks at btrfs_finish_ordered_io() when trying to lock the
file range [0, 128K).
This results in a deadlock, because:
- task B is holding the file range [0, 128K) locked, waiting for the
range [128K, 256K) to be unlocked by task A;
- task A is holding the file range [128K, 256K) locked and it's waiting
for the async data reclaim task to satisfy its space reservation
request;
- the async data reclaim task is waiting for ordered extent [0, 128K)
to complete, but the ordered extent can not complete because the
file range [0, 128K) is currently locked by task B, which is waiting
on task A to unlock file range [128K, 256K) and task A waiting
on the async data reclaim task.
This results in a deadlock between 4 task: task A, task B, the async
data reclaim task and the task doing ordered extent completion (a work
queue task).
This type of deadlock can sporadically be triggered by the test case
generic/300 from fstests, and results in a stack trace like the following:
[12084.033689] INFO: task kworker/u16:7:123749 blocked for more than 241 seconds.
[12084.034877] Not tainted 5.18.0-rc2-btrfs-next-115 #1
[12084.035562] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[12084.036548] task:kworker/u16:7 state:D stack: 0 pid:123749 ppid: 2 flags:0x00004000
[12084.036554] Workqueue: btrfs-flush_delalloc btrfs_work_helper [btrfs]
[12084.036599] Call Trace:
[12084.036601] <TASK>
[12084.036606] __schedule+0x3cb/0xed0
[12084.036616] schedule+0x4e/0xb0
[12084.036620] btrfs_start_ordered_extent+0x109/0x1c0 [btrfs]
[12084.036651] ? prepare_to_wait_exclusive+0xc0/0xc0
[12084.036659] btrfs_run_ordered_extent_work+0x1a/0x30 [btrfs]
[12084.036688] btrfs_work_helper+0xf8/0x400 [btrfs]
[12084.0367
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix potential array overflow in bpf_trampoline_get_progs()
The cnt value in the 'cnt >= BPF_MAX_TRAMP_PROGS' check does not
include BPF_TRAMP_MODIFY_RETURN bpf programs, so the number of
the attached BPF_TRAMP_MODIFY_RETURN bpf programs in a trampoline
can exceed BPF_MAX_TRAMP_PROGS.
When this happens, the assignment '*progs++ = aux->prog' in
bpf_trampoline_get_progs() will cause progs array overflow as the
progs field in the bpf_tramp_progs struct can only hold at most
BPF_MAX_TRAMP_PROGS bpf programs.
In the Linux kernel, the following vulnerability has been resolved:
x86/MCE/AMD: Fix memory leak when threshold_create_bank() fails
In mce_threshold_create_device(), if threshold_create_bank() fails, the
previously allocated threshold banks array @bp will be leaked because
the call to mce_threshold_remove_device() will not free it.
This happens because mce_threshold_remove_device() fetches the pointer
through the threshold_banks per-CPU variable but bp is written there
only after the bank creation is successful, and not before, when
threshold_create_bank() fails.
Add a helper which unwinds all the bank creation work previously done
and pass into it the previously allocated threshold banks array for
freeing.
[ bp: Massage. ]
In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: provide block_invalidate_folio to fix memory leak
The ntfs3 filesystem lacks the 'invalidate_folio' method and it causes
memory leak. If you write to the filesystem and then unmount it, the
cached written data are not freed and they are permanently leaked.
In the Linux kernel, the following vulnerability has been resolved:
usb: isp1760: Fix out-of-bounds array access
Running the driver through kasan gives an interesting splat:
BUG: KASAN: global-out-of-bounds in isp1760_register+0x180/0x70c
Read of size 20 at addr f1db2e64 by task swapper/0/1
(...)
isp1760_register from isp1760_plat_probe+0x1d8/0x220
(...)
This happens because the loop reading the regmap fields for the
different ISP1760 variants look like this:
for (i = 0; i < HC_FIELD_MAX; i++) { ... }
Meaning it expects the arrays to be at least HC_FIELD_MAX - 1 long.
However the arrays isp1760_hc_reg_fields[], isp1763_hc_reg_fields[],
isp1763_hc_volatile_ranges[] and isp1763_dc_volatile_ranges[] are
dynamically sized during compilation.
Fix this by putting an empty assignment to the [HC_FIELD_MAX]
and [DC_FIELD_MAX] array member at the end of each array.
This will make the array one member longer than it needs to be,
but avoids the risk of overwriting whatever is inside
[HC_FIELD_MAX - 1] and is simple and intuitive to read. Also
add comments explaining what is going on.
In the Linux kernel, the following vulnerability has been resolved:
loop: implement ->free_disk
Ensure that the lo_device which is stored in the gendisk private
data is valid until the gendisk is freed. Currently the loop driver
uses a lot of effort to make sure a device is not freed when it is
still in use, but to to fix a potential deadlock this will be relaxed
a bit soon.
In the Linux kernel, the following vulnerability has been resolved:
drm/virtio: fix NULL pointer dereference in virtio_gpu_conn_get_modes
drm_cvt_mode may return NULL and we should check it.
This bug is found by syzkaller:
FAULT_INJECTION stacktrace:
[ 168.567394] FAULT_INJECTION: forcing a failure.
name failslab, interval 1, probability 0, space 0, times 1
[ 168.567403] CPU: 1 PID: 6425 Comm: syz Kdump: loaded Not tainted 4.19.90-vhulk2201.1.0.h1035.kasan.eulerosv2r10.aarch64 #1
[ 168.567406] Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
[ 168.567408] Call trace:
[ 168.567414] dump_backtrace+0x0/0x310
[ 168.567418] show_stack+0x28/0x38
[ 168.567423] dump_stack+0xec/0x15c
[ 168.567427] should_fail+0x3ac/0x3d0
[ 168.567437] __should_failslab+0xb8/0x120
[ 168.567441] should_failslab+0x28/0xc0
[ 168.567445] kmem_cache_alloc_trace+0x50/0x640
[ 168.567454] drm_mode_create+0x40/0x90
[ 168.567458] drm_cvt_mode+0x48/0xc78
[ 168.567477] virtio_gpu_conn_get_modes+0xa8/0x140 [virtio_gpu]
[ 168.567485] drm_helper_probe_single_connector_modes+0x3a4/0xd80
[ 168.567492] drm_mode_getconnector+0x2e0/0xa70
[ 168.567496] drm_ioctl_kernel+0x11c/0x1d8
[ 168.567514] drm_ioctl+0x558/0x6d0
[ 168.567522] do_vfs_ioctl+0x160/0xf30
[ 168.567525] ksys_ioctl+0x98/0xd8
[ 168.567530] __arm64_sys_ioctl+0x50/0xc8
[ 168.567536] el0_svc_common+0xc8/0x320
[ 168.567540] el0_svc_handler+0xf8/0x160
[ 168.567544] el0_svc+0x10/0x218
KASAN stacktrace:
[ 168.567561] BUG: KASAN: null-ptr-deref in virtio_gpu_conn_get_modes+0xb4/0x140 [virtio_gpu]
[ 168.567565] Read of size 4 at addr 0000000000000054 by task syz/6425
[ 168.567566]
[ 168.567571] CPU: 1 PID: 6425 Comm: syz Kdump: loaded Not tainted 4.19.90-vhulk2201.1.0.h1035.kasan.eulerosv2r10.aarch64 #1
[ 168.567573] Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
[ 168.567575] Call trace:
[ 168.567578] dump_backtrace+0x0/0x310
[ 168.567582] show_stack+0x28/0x38
[ 168.567586] dump_stack+0xec/0x15c
[ 168.567591] kasan_report+0x244/0x2f0
[ 168.567594] __asan_load4+0x58/0xb0
[ 168.567607] virtio_gpu_conn_get_modes+0xb4/0x140 [virtio_gpu]
[ 168.567612] drm_helper_probe_single_connector_modes+0x3a4/0xd80
[ 168.567617] drm_mode_getconnector+0x2e0/0xa70
[ 168.567621] drm_ioctl_kernel+0x11c/0x1d8
[ 168.567624] drm_ioctl+0x558/0x6d0
[ 168.567628] do_vfs_ioctl+0x160/0xf30
[ 168.567632] ksys_ioctl+0x98/0xd8
[ 168.567636] __arm64_sys_ioctl+0x50/0xc8
[ 168.567641] el0_svc_common+0xc8/0x320
[ 168.567645] el0_svc_handler+0xf8/0x160
[ 168.567649] el0_svc+0x10/0x218