Security Vulnerabilities
- CVEs Published In February 2025
In the Linux kernel, the following vulnerability has been resolved:
ima: Fix potential memory leak in ima_init_crypto()
On failure to allocate the SHA1 tfm, IMA fails to initialize and exits
without freeing the ima_algo_array. Add the missing kfree() for
ima_algo_array to avoid the potential memory leak.
In the Linux kernel, the following vulnerability has been resolved:
nexthop: Fix data-races around nexthop_compat_mode.
While reading nexthop_compat_mode, it can be changed concurrently.
Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved:
tcp: Fix a data-race around sysctl_tcp_ecn_fallback.
While reading sysctl_tcp_ecn_fallback, it can be changed concurrently.
Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved:
raw: Fix a data-race around sysctl_raw_l3mdev_accept.
While reading sysctl_raw_l3mdev_accept, it can be changed concurrently.
Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved:
icmp: Fix a data-race around sysctl_icmp_errors_use_inbound_ifaddr.
While reading sysctl_icmp_errors_use_inbound_ifaddr, it can be changed
concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved:
icmp: Fix data-races around sysctl_icmp_echo_enable_probe.
While reading sysctl_icmp_echo_enable_probe, it can be changed
concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved:
sysctl: Fix data-races in proc_dou8vec_minmax().
A sysctl variable is accessed concurrently, and there is always a chance
of data-race. So, all readers and writers need some basic protection to
avoid load/store-tearing.
This patch changes proc_dou8vec_minmax() to use READ_ONCE() and
WRITE_ONCE() internally to fix data-races on the sysctl side. For now,
proc_dou8vec_minmax() itself is tolerant to a data-race, but we still
need to add annotations on the other subsystem's side.
In the Linux kernel, the following vulnerability has been resolved:
vlan: fix memory leak in vlan_newlink()
Blamed commit added back a bug I fixed in commit 9bbd917e0bec
("vlan: fix memory leak in vlan_dev_set_egress_priority")
If a memory allocation fails in vlan_changelink() after other allocations
succeeded, we need to call vlan_dev_free_egress_priority()
to free all allocated memory because after a failed ->newlink()
we do not call any methods like ndo_uninit() or dev->priv_destructor().
In following example, if the allocation for last element 2000:2001 fails,
we need to free eight prior allocations:
ip link add link dummy0 dummy0.100 type vlan id 100 \
egress-qos-map 1:2 2:3 3:4 4:5 5:6 6:7 7:8 8:9 2000:2001
syzbot report was:
BUG: memory leak
unreferenced object 0xffff888117bd1060 (size 32):
comm "syz-executor408", pid 3759, jiffies 4294956555 (age 34.090s)
hex dump (first 32 bytes):
09 00 00 00 00 a0 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffff83fc60ad>] kmalloc include/linux/slab.h:600 [inline]
[<ffffffff83fc60ad>] vlan_dev_set_egress_priority+0xed/0x170 net/8021q/vlan_dev.c:193
[<ffffffff83fc6628>] vlan_changelink+0x178/0x1d0 net/8021q/vlan_netlink.c:128
[<ffffffff83fc67c8>] vlan_newlink+0x148/0x260 net/8021q/vlan_netlink.c:185
[<ffffffff838b1278>] rtnl_newlink_create net/core/rtnetlink.c:3363 [inline]
[<ffffffff838b1278>] __rtnl_newlink+0xa58/0xdc0 net/core/rtnetlink.c:3580
[<ffffffff838b1629>] rtnl_newlink+0x49/0x70 net/core/rtnetlink.c:3593
[<ffffffff838ac66c>] rtnetlink_rcv_msg+0x21c/0x5c0 net/core/rtnetlink.c:6089
[<ffffffff839f9c37>] netlink_rcv_skb+0x87/0x1d0 net/netlink/af_netlink.c:2501
[<ffffffff839f8da7>] netlink_unicast_kernel net/netlink/af_netlink.c:1319 [inline]
[<ffffffff839f8da7>] netlink_unicast+0x397/0x4c0 net/netlink/af_netlink.c:1345
[<ffffffff839f9266>] netlink_sendmsg+0x396/0x710 net/netlink/af_netlink.c:1921
[<ffffffff8384dbf6>] sock_sendmsg_nosec net/socket.c:714 [inline]
[<ffffffff8384dbf6>] sock_sendmsg+0x56/0x80 net/socket.c:734
[<ffffffff8384e15c>] ____sys_sendmsg+0x36c/0x390 net/socket.c:2488
[<ffffffff838523cb>] ___sys_sendmsg+0x8b/0xd0 net/socket.c:2542
[<ffffffff838525b8>] __sys_sendmsg net/socket.c:2571 [inline]
[<ffffffff838525b8>] __do_sys_sendmsg net/socket.c:2580 [inline]
[<ffffffff838525b8>] __se_sys_sendmsg net/socket.c:2578 [inline]
[<ffffffff838525b8>] __x64_sys_sendmsg+0x78/0xf0 net/socket.c:2578
[<ffffffff845ad8d5>] do_syscall_x64 arch/x86/entry/common.c:50 [inline]
[<ffffffff845ad8d5>] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
[<ffffffff8460006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
In the Linux kernel, the following vulnerability has been resolved:
ipv4: Fix a data-race around sysctl_fib_sync_mem.
While reading sysctl_fib_sync_mem, it can be changed concurrently.
So, we need to add READ_ONCE() to avoid a data-race.
In the Linux kernel, the following vulnerability has been resolved:
pinctrl: aspeed: Fix potential NULL dereference in aspeed_pinmux_set_mux()
pdesc could be null but still dereference pdesc->name and it will lead to
a null pointer access. So we move a null check before dereference.