Security Vulnerabilities
- CVEs Published In February 2025
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7925: fix off by one in mt7925_load_clc()
This comparison should be >= instead of > to prevent an out of bounds
read and write.
In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw89: chan: fix soft lockup in rtw89_entity_recalc_mgnt_roles()
During rtw89_entity_recalc_mgnt_roles(), there is a normalizing process
which will re-order the list if an entry with target pattern is found.
And once one is found, should have aborted the list_for_each_entry. But,
`break` just aborted the inner for-loop. The outer list_for_each_entry
still continues. Normally, only the first entry will match the target
pattern, and the re-ordering will change nothing, so there won't be
soft lockup. However, in some special cases, soft lockup would happen.
Fix it by `goto fill` to break from the list_for_each_entry.
The following is a sample of kernel log for this problem.
watchdog: BUG: soft lockup - CPU#1 stuck for 26s! [wpa_supplicant:2055]
[...]
RIP: 0010:rtw89_entity_recalc ([...] chan.c:392 chan.c:479) rtw89_core
[...]
In the Linux kernel, the following vulnerability has been resolved:
wifi: wilc1000: unregister wiphy only if it has been registered
There is a specific error path in probe functions in wilc drivers (both
sdio and spi) which can lead to kernel panic, as this one for example
when using SPI:
Unable to handle kernel paging request at virtual address 9f000000 when read
[9f000000] *pgd=00000000
Internal error: Oops: 5 [#1] ARM
Modules linked in: wilc1000_spi(+) crc_itu_t crc7 wilc1000 cfg80211 bluetooth ecdh_generic ecc
CPU: 0 UID: 0 PID: 106 Comm: modprobe Not tainted 6.13.0-rc3+ #22
Hardware name: Atmel SAMA5
PC is at wiphy_unregister+0x244/0xc40 [cfg80211]
LR is at wiphy_unregister+0x1c0/0xc40 [cfg80211]
[...]
wiphy_unregister [cfg80211] from wilc_netdev_cleanup+0x380/0x494 [wilc1000]
wilc_netdev_cleanup [wilc1000] from wilc_bus_probe+0x360/0x834 [wilc1000_spi]
wilc_bus_probe [wilc1000_spi] from spi_probe+0x15c/0x1d4
spi_probe from really_probe+0x270/0xb2c
really_probe from __driver_probe_device+0x1dc/0x4e8
__driver_probe_device from driver_probe_device+0x5c/0x140
driver_probe_device from __driver_attach+0x220/0x540
__driver_attach from bus_for_each_dev+0x13c/0x1a8
bus_for_each_dev from bus_add_driver+0x2a0/0x6a4
bus_add_driver from driver_register+0x27c/0x51c
driver_register from do_one_initcall+0xf8/0x564
do_one_initcall from do_init_module+0x2e4/0x82c
do_init_module from load_module+0x59a0/0x70c4
load_module from init_module_from_file+0x100/0x148
init_module_from_file from sys_finit_module+0x2fc/0x924
sys_finit_module from ret_fast_syscall+0x0/0x1c
The issue can easily be reproduced, for example by not wiring correctly
a wilc device through SPI (and so, make it unresponsive to early SPI
commands). It is due to a recent change decoupling wiphy allocation from
wiphy registration, however wilc_netdev_cleanup has not been updated
accordingly, letting it possibly call wiphy unregister on a wiphy which
has never been registered.
Fix this crash by moving wiphy_unregister/wiphy_free out of
wilc_netdev_cleanup, and by adjusting error paths in both drivers
In the Linux kernel, the following vulnerability has been resolved:
HID: hid-thrustmaster: Fix warning in thrustmaster_probe by adding endpoint check
syzbot has found a type mismatch between a USB pipe and the transfer
endpoint, which is triggered by the hid-thrustmaster driver[1].
There is a number of similar, already fixed issues [2].
In this case as in others, implementing check for endpoint type fixes the issue.
[1] https://syzkaller.appspot.com/bug?extid=040e8b3db6a96908d470
[2] https://syzkaller.appspot.com/bug?extid=348331f63b034f89b622
In the Linux kernel, the following vulnerability has been resolved:
ptr_ring: do not block hard interrupts in ptr_ring_resize_multiple()
Jakub added a lockdep_assert_no_hardirq() check in __page_pool_put_page()
to increase test coverage.
syzbot found a splat caused by hard irq blocking in
ptr_ring_resize_multiple() [1]
As current users of ptr_ring_resize_multiple() do not require
hard irqs being masked, replace it to only block BH.
Rename helpers to better reflect they are safe against BH only.
- ptr_ring_resize_multiple() to ptr_ring_resize_multiple_bh()
- skb_array_resize_multiple() to skb_array_resize_multiple_bh()
[1]
WARNING: CPU: 1 PID: 9150 at net/core/page_pool.c:709 __page_pool_put_page net/core/page_pool.c:709 [inline]
WARNING: CPU: 1 PID: 9150 at net/core/page_pool.c:709 page_pool_put_unrefed_netmem+0x157/0xa40 net/core/page_pool.c:780
Modules linked in:
CPU: 1 UID: 0 PID: 9150 Comm: syz.1.1052 Not tainted 6.11.0-rc3-syzkaller-00202-gf8669d7b5f5d #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/06/2024
RIP: 0010:__page_pool_put_page net/core/page_pool.c:709 [inline]
RIP: 0010:page_pool_put_unrefed_netmem+0x157/0xa40 net/core/page_pool.c:780
Code: 74 0e e8 7c aa fb f7 eb 43 e8 75 aa fb f7 eb 3c 65 8b 1d 38 a8 6a 76 31 ff 89 de e8 a3 ae fb f7 85 db 74 0b e8 5a aa fb f7 90 <0f> 0b 90 eb 1d 65 8b 1d 15 a8 6a 76 31 ff 89 de e8 84 ae fb f7 85
RSP: 0018:ffffc9000bda6b58 EFLAGS: 00010083
RAX: ffffffff8997e523 RBX: 0000000000000000 RCX: 0000000000040000
RDX: ffffc9000fbd0000 RSI: 0000000000001842 RDI: 0000000000001843
RBP: 0000000000000000 R08: ffffffff8997df2c R09: 1ffffd40003a000d
R10: dffffc0000000000 R11: fffff940003a000e R12: ffffea0001d00040
R13: ffff88802e8a4000 R14: dffffc0000000000 R15: 00000000ffffffff
FS: 00007fb7aaf716c0(0000) GS:ffff8880b9300000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa15a0d4b72 CR3: 00000000561b0000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
tun_ptr_free drivers/net/tun.c:617 [inline]
__ptr_ring_swap_queue include/linux/ptr_ring.h:571 [inline]
ptr_ring_resize_multiple_noprof include/linux/ptr_ring.h:643 [inline]
tun_queue_resize drivers/net/tun.c:3694 [inline]
tun_device_event+0xaaf/0x1080 drivers/net/tun.c:3714
notifier_call_chain+0x19f/0x3e0 kernel/notifier.c:93
call_netdevice_notifiers_extack net/core/dev.c:2032 [inline]
call_netdevice_notifiers net/core/dev.c:2046 [inline]
dev_change_tx_queue_len+0x158/0x2a0 net/core/dev.c:9024
do_setlink+0xff6/0x41f0 net/core/rtnetlink.c:2923
rtnl_setlink+0x40d/0x5a0 net/core/rtnetlink.c:3201
rtnetlink_rcv_msg+0x73f/0xcf0 net/core/rtnetlink.c:6647
netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2550
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix read pointer after free in ath12k_mac_assign_vif_to_vdev()
In ath12k_mac_assign_vif_to_vdev(), if arvif is created on a different
radio, it gets deleted from that radio through a call to
ath12k_mac_unassign_link_vif(). This action frees the arvif pointer.
Subsequently, there is a check involving arvif, which will result in a
read-after-free scenario.
Fix this by moving this check after arvif is again assigned via call to
ath12k_mac_assign_link_vif().
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.3.1-00173-QCAHKSWPL_SILICONZ-1
In the Linux kernel, the following vulnerability has been resolved:
net_sched: sch_sfq: don't allow 1 packet limit
The current implementation does not work correctly with a limit of
1. iproute2 actually checks for this and this patch adds the check in
kernel as well.
This fixes the following syzkaller reported crash:
UBSAN: array-index-out-of-bounds in net/sched/sch_sfq.c:210:6
index 65535 is out of range for type 'struct sfq_head[128]'
CPU: 0 PID: 2569 Comm: syz-executor101 Not tainted 5.10.0-smp-DEV #1
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Call Trace:
__dump_stack lib/dump_stack.c:79 [inline]
dump_stack+0x125/0x19f lib/dump_stack.c:120
ubsan_epilogue lib/ubsan.c:148 [inline]
__ubsan_handle_out_of_bounds+0xed/0x120 lib/ubsan.c:347
sfq_link net/sched/sch_sfq.c:210 [inline]
sfq_dec+0x528/0x600 net/sched/sch_sfq.c:238
sfq_dequeue+0x39b/0x9d0 net/sched/sch_sfq.c:500
sfq_reset+0x13/0x50 net/sched/sch_sfq.c:525
qdisc_reset+0xfe/0x510 net/sched/sch_generic.c:1026
tbf_reset+0x3d/0x100 net/sched/sch_tbf.c:319
qdisc_reset+0xfe/0x510 net/sched/sch_generic.c:1026
dev_reset_queue+0x8c/0x140 net/sched/sch_generic.c:1296
netdev_for_each_tx_queue include/linux/netdevice.h:2350 [inline]
dev_deactivate_many+0x6dc/0xc20 net/sched/sch_generic.c:1362
__dev_close_many+0x214/0x350 net/core/dev.c:1468
dev_close_many+0x207/0x510 net/core/dev.c:1506
unregister_netdevice_many+0x40f/0x16b0 net/core/dev.c:10738
unregister_netdevice_queue+0x2be/0x310 net/core/dev.c:10695
unregister_netdevice include/linux/netdevice.h:2893 [inline]
__tun_detach+0x6b6/0x1600 drivers/net/tun.c:689
tun_detach drivers/net/tun.c:705 [inline]
tun_chr_close+0x104/0x1b0 drivers/net/tun.c:3640
__fput+0x203/0x840 fs/file_table.c:280
task_work_run+0x129/0x1b0 kernel/task_work.c:185
exit_task_work include/linux/task_work.h:33 [inline]
do_exit+0x5ce/0x2200 kernel/exit.c:931
do_group_exit+0x144/0x310 kernel/exit.c:1046
__do_sys_exit_group kernel/exit.c:1057 [inline]
__se_sys_exit_group kernel/exit.c:1055 [inline]
__x64_sys_exit_group+0x3b/0x40 kernel/exit.c:1055
do_syscall_64+0x6c/0xd0
entry_SYSCALL_64_after_hwframe+0x61/0xcb
RIP: 0033:0x7fe5e7b52479
Code: Unable to access opcode bytes at RIP 0x7fe5e7b5244f.
RSP: 002b:00007ffd3c800398 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fe5e7b52479
RDX: 000000000000003c RSI: 00000000000000e7 RDI: 0000000000000000
RBP: 00007fe5e7bcd2d0 R08: ffffffffffffffb8 R09: 0000000000000014
R10: 0000000000000000 R11: 0000000000000246 R12: 00007fe5e7bcd2d0
R13: 0000000000000000 R14: 00007fe5e7bcdd20 R15: 00007fe5e7b24270
The crash can be also be reproduced with the following (with a tc
recompiled to allow for sfq limits of 1):
tc qdisc add dev dummy0 handle 1: root tbf rate 1Kbit burst 100b lat 1s
../iproute2-6.9.0/tc/tc qdisc add dev dummy0 handle 2: parent 1:10 sfq limit 1
ifconfig dummy0 up
ping -I dummy0 -f -c2 -W0.1 8.8.8.8
sleep 1
Scenario that triggers the crash:
* the first packet is sent and queued in TBF and SFQ; qdisc qlen is 1
* TBF dequeues: it peeks from SFQ which moves the packet to the
gso_skb list and keeps qdisc qlen set to 1. TBF is out of tokens so
it schedules itself for later.
* the second packet is sent and TBF tries to queues it to SFQ. qdisc
qlen is now 2 and because the SFQ limit is 1 the packet is dropped
by SFQ. At this point qlen is 1, and all of the SFQ slots are empty,
however q->tail is not NULL.
At this point, assuming no more packets are queued, when sch_dequeue
runs again it will decrement the qlen for the current empty slot
causing an underflow and the subsequent out of bounds access.
In the Linux kernel, the following vulnerability has been resolved:
wifi: wcn36xx: fix channel survey memory allocation size
KASAN reported a memory allocation issue in wcn->chan_survey
due to incorrect size calculation.
This commit uses kcalloc to allocate memory for wcn->chan_survey,
ensuring proper initialization and preventing the use of uninitialized
values when there are no frames on the channel.
In the Linux kernel, the following vulnerability has been resolved:
OPP: add index check to assert to avoid buffer overflow in _read_freq()
Pass the freq index to the assert function to make sure
we do not read a freq out of the opp->rates[] table when called
from the indexed variants:
dev_pm_opp_find_freq_exact_indexed() or
dev_pm_opp_find_freq_ceil/floor_indexed().
Add a secondary parameter to the assert function, unused
for assert_single_clk() then add assert_clk_index() which
will check for the clock index when called from the _indexed()
find functions.
In the Linux kernel, the following vulnerability has been resolved:
powerpc/pseries/iommu: IOMMU incorrectly marks MMIO range in DDW
Power Hypervisor can possibily allocate MMIO window intersecting with
Dynamic DMA Window (DDW) range, which is over 32-bit addressing.
These MMIO pages needs to be marked as reserved so that IOMMU doesn't map
DMA buffers in this range.
The current code is not marking these pages correctly which is resulting
in LPAR to OOPS while booting. The stack is at below
BUG: Unable to handle kernel data access on read at 0xc00800005cd40000
Faulting instruction address: 0xc00000000005cdac
Oops: Kernel access of bad area, sig: 11 [#1]
LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries
Modules linked in: af_packet rfkill ibmveth(X) lpfc(+) nvmet_fc nvmet nvme_keyring crct10dif_vpmsum nvme_fc nvme_fabrics nvme_core be2net(+) nvme_auth rtc_generic nfsd auth_rpcgss nfs_acl lockd grace sunrpc fuse configfs ip_tables x_tables xfs libcrc32c dm_service_time ibmvfc(X) scsi_transport_fc vmx_crypto gf128mul crc32c_vpmsum dm_mirror dm_region_hash dm_log dm_multipath dm_mod sd_mod scsi_dh_emc scsi_dh_rdac scsi_dh_alua t10_pi crc64_rocksoft_generic crc64_rocksoft sg crc64 scsi_mod
Supported: Yes, External
CPU: 8 PID: 241 Comm: kworker/8:1 Kdump: loaded Not tainted 6.4.0-150600.23.14-default #1 SLE15-SP6 b44ee71c81261b9e4bab5e0cde1f2ed891d5359b
Hardware name: IBM,9080-M9S POWER9 (raw) 0x4e2103 0xf000005 of:IBM,FW950.B0 (VH950_149) hv:phyp pSeries
Workqueue: events work_for_cpu_fn
NIP: c00000000005cdac LR: c00000000005e830 CTR: 0000000000000000
REGS: c00001400c9ff770 TRAP: 0300 Not tainted (6.4.0-150600.23.14-default)
MSR: 800000000280b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 24228448 XER: 00000001
CFAR: c00000000005cdd4 DAR: c00800005cd40000 DSISR: 40000000 IRQMASK: 0
GPR00: c00000000005e830 c00001400c9ffa10 c000000001987d00 c00001400c4fe800
GPR04: 0000080000000000 0000000000000001 0000000004000000 0000000000800000
GPR08: 0000000004000000 0000000000000001 c00800005cd40000 ffffffffffffffff
GPR12: 0000000084228882 c00000000a4c4f00 0000000000000010 0000080000000000
GPR16: c00001400c4fe800 0000000004000000 0800000000000000 c00000006088b800
GPR20: c00001401a7be980 c00001400eff3800 c000000002a2da68 000000000000002b
GPR24: c0000000026793a8 c000000002679368 000000000000002a c0000000026793c8
GPR28: 000008007effffff 0000080000000000 0000000000800000 c00001400c4fe800
NIP [c00000000005cdac] iommu_table_reserve_pages+0xac/0x100
LR [c00000000005e830] iommu_init_table+0x80/0x1e0
Call Trace:
[c00001400c9ffa10] [c00000000005e810] iommu_init_table+0x60/0x1e0 (unreliable)
[c00001400c9ffa90] [c00000000010356c] iommu_bypass_supported_pSeriesLP+0x9cc/0xe40
[c00001400c9ffc30] [c00000000005c300] dma_iommu_dma_supported+0xf0/0x230
[c00001400c9ffcb0] [c00000000024b0c4] dma_supported+0x44/0x90
[c00001400c9ffcd0] [c00000000024b14c] dma_set_mask+0x3c/0x80
[c00001400c9ffd00] [c0080000555b715c] be_probe+0xc4/0xb90 [be2net]
[c00001400c9ffdc0] [c000000000986f3c] local_pci_probe+0x6c/0x110
[c00001400c9ffe40] [c000000000188f28] work_for_cpu_fn+0x38/0x60
[c00001400c9ffe70] [c00000000018e454] process_one_work+0x314/0x620
[c00001400c9fff10] [c00000000018f280] worker_thread+0x2b0/0x620
[c00001400c9fff90] [c00000000019bb18] kthread+0x148/0x150
[c00001400c9fffe0] [c00000000000ded8] start_kernel_thread+0x14/0x18
There are 2 issues in the code
1. The index is "int" while the address is "unsigned long". This results in
negative value when setting the bitmap.
2. The DMA offset is page shifted but the MMIO range is used as-is (64-bit
address). MMIO address needs to be page shifted as well.