Security Vulnerabilities
- CVEs Published In February 2025
In the Linux kernel, the following vulnerability has been resolved:
usbnet: ipheth: fix possible overflow in DPE length check
Originally, it was possible for the DPE length check to overflow if
wDatagramIndex + wDatagramLength > U16_MAX. This could lead to an OoB
read.
Move the wDatagramIndex term to the other side of the inequality.
An existing condition ensures that wDatagramIndex < urb->actual_length.
In the Linux kernel, the following vulnerability has been resolved:
HID: winwing: Add NULL check in winwing_init_led()
devm_kasprintf() can return a NULL pointer on failure,but this
returned value in winwing_init_led() is not checked.
Add NULL check in winwing_init_led(), to handle kernel NULL
pointer dereference error.
In the Linux kernel, the following vulnerability has been resolved:
platform/x86: int3472: Check for adev == NULL
Not all devices have an ACPI companion fwnode, so adev might be NULL. This
can e.g. (theoretically) happen when a user manually binds one of
the int3472 drivers to another i2c/platform device through sysfs.
Add a check for adev not being set and return -ENODEV in that case to
avoid a possible NULL pointer deref in skl_int3472_get_acpi_buffer().
In the Linux kernel, the following vulnerability has been resolved:
ASoC: SOF: Intel: hda-dai: Ensure DAI widget is valid during params
Each cpu DAI should associate with a widget. However, the topology might
not create the right number of DAI widgets for aggregated amps. And it
will cause NULL pointer deference.
Check that the DAI widget associated with the CPU DAI is valid to prevent
NULL pointer deference due to missing DAI widgets in topologies with
aggregated amps.
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: MGMT: Fix slab-use-after-free Read in mgmt_remove_adv_monitor_sync
This fixes the following crash:
==================================================================
BUG: KASAN: slab-use-after-free in mgmt_remove_adv_monitor_sync+0x3a/0xd0 net/bluetooth/mgmt.c:5543
Read of size 8 at addr ffff88814128f898 by task kworker/u9:4/5961
CPU: 1 UID: 0 PID: 5961 Comm: kworker/u9:4 Not tainted 6.12.0-syzkaller-10684-gf1cd565ce577 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Workqueue: hci0 hci_cmd_sync_work
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0x169/0x550 mm/kasan/report.c:489
kasan_report+0x143/0x180 mm/kasan/report.c:602
mgmt_remove_adv_monitor_sync+0x3a/0xd0 net/bluetooth/mgmt.c:5543
hci_cmd_sync_work+0x22b/0x400 net/bluetooth/hci_sync.c:332
process_one_work kernel/workqueue.c:3229 [inline]
process_scheduled_works+0xa63/0x1850 kernel/workqueue.c:3310
worker_thread+0x870/0xd30 kernel/workqueue.c:3391
kthread+0x2f0/0x390 kernel/kthread.c:389
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
</TASK>
Allocated by task 16026:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:394
kasan_kmalloc include/linux/kasan.h:260 [inline]
__kmalloc_cache_noprof+0x243/0x390 mm/slub.c:4314
kmalloc_noprof include/linux/slab.h:901 [inline]
kzalloc_noprof include/linux/slab.h:1037 [inline]
mgmt_pending_new+0x65/0x250 net/bluetooth/mgmt_util.c:269
mgmt_pending_add+0x36/0x120 net/bluetooth/mgmt_util.c:296
remove_adv_monitor+0x102/0x1b0 net/bluetooth/mgmt.c:5568
hci_mgmt_cmd+0xc47/0x11d0 net/bluetooth/hci_sock.c:1712
hci_sock_sendmsg+0x7b8/0x11c0 net/bluetooth/hci_sock.c:1832
sock_sendmsg_nosec net/socket.c:711 [inline]
__sock_sendmsg+0x221/0x270 net/socket.c:726
sock_write_iter+0x2d7/0x3f0 net/socket.c:1147
new_sync_write fs/read_write.c:586 [inline]
vfs_write+0xaeb/0xd30 fs/read_write.c:679
ksys_write+0x18f/0x2b0 fs/read_write.c:731
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 16022:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:582
poison_slab_object mm/kasan/common.c:247 [inline]
__kasan_slab_free+0x59/0x70 mm/kasan/common.c:264
kasan_slab_free include/linux/kasan.h:233 [inline]
slab_free_hook mm/slub.c:2338 [inline]
slab_free mm/slub.c:4598 [inline]
kfree+0x196/0x420 mm/slub.c:4746
mgmt_pending_foreach+0xd1/0x130 net/bluetooth/mgmt_util.c:259
__mgmt_power_off+0x183/0x430 net/bluetooth/mgmt.c:9550
hci_dev_close_sync+0x6c4/0x11c0 net/bluetooth/hci_sync.c:5208
hci_dev_do_close net/bluetooth/hci_core.c:483 [inline]
hci_dev_close+0x112/0x210 net/bluetooth/hci_core.c:508
sock_do_ioctl+0x158/0x460 net/socket.c:1209
sock_ioctl+0x626/0x8e0 net/socket.c:1328
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:906 [inline]
__se_sys_ioctl+0xf5/0x170 fs/ioctl.c:892
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
In the Linux kernel, the following vulnerability has been resolved:
printk: Fix signed integer overflow when defining LOG_BUF_LEN_MAX
Shifting 1 << 31 on a 32-bit int causes signed integer overflow, which
leads to undefined behavior. To prevent this, cast 1 to u32 before
performing the shift, ensuring well-defined behavior.
This change explicitly avoids any potential overflow by ensuring that
the shift occurs on an unsigned 32-bit integer.
In the Linux kernel, the following vulnerability has been resolved:
HID: multitouch: Add NULL check in mt_input_configured
devm_kasprintf() can return a NULL pointer on failure,but this
returned value in mt_input_configured() is not checked.
Add NULL check in mt_input_configured(), to handle kernel NULL
pointer dereference error.
In the Linux kernel, the following vulnerability has been resolved:
media: uvcvideo: Remove dangling pointers
When an async control is written, we copy a pointer to the file handle
that started the operation. That pointer will be used when the device is
done. Which could be anytime in the future.
If the user closes that file descriptor, its structure will be freed,
and there will be one dangling pointer per pending async control, that
the driver will try to use.
Clean all the dangling pointers during release().
To avoid adding a performance penalty in the most common case (no async
operation), a counter has been introduced with some logic to make sure
that it is properly handled.
In the Linux kernel, the following vulnerability has been resolved:
tpm: Change to kvalloc() in eventlog/acpi.c
The following failure was reported on HPE ProLiant D320:
[ 10.693310][ T1] tpm_tis STM0925:00: 2.0 TPM (device-id 0x3, rev-id 0)
[ 10.848132][ T1] ------------[ cut here ]------------
[ 10.853559][ T1] WARNING: CPU: 59 PID: 1 at mm/page_alloc.c:4727 __alloc_pages_noprof+0x2ca/0x330
[ 10.862827][ T1] Modules linked in:
[ 10.866671][ T1] CPU: 59 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.12.0-lp155.2.g52785e2-default #1 openSUSE Tumbleweed (unreleased) 588cd98293a7c9eba9013378d807364c088c9375
[ 10.882741][ T1] Hardware name: HPE ProLiant DL320 Gen12/ProLiant DL320 Gen12, BIOS 1.20 10/28/2024
[ 10.892170][ T1] RIP: 0010:__alloc_pages_noprof+0x2ca/0x330
[ 10.898103][ T1] Code: 24 08 e9 4a fe ff ff e8 34 36 fa ff e9 88 fe ff ff 83 fe 0a 0f 86 b3 fd ff ff 80 3d 01 e7 ce 01 00 75 09 c6 05 f8 e6 ce 01 01 <0f> 0b 45 31 ff e9 e5 fe ff ff f7 c2 00 00 08 00 75 42 89 d9 80 e1
[ 10.917750][ T1] RSP: 0000:ffffb7cf40077980 EFLAGS: 00010246
[ 10.923777][ T1] RAX: 0000000000000000 RBX: 0000000000040cc0 RCX: 0000000000000000
[ 10.931727][ T1] RDX: 0000000000000000 RSI: 000000000000000c RDI: 0000000000040cc0
The above transcript shows that ACPI pointed a 16 MiB buffer for the log
events because RSI maps to the 'order' parameter of __alloc_pages_noprof().
Address the bug by moving from devm_kmalloc() to devm_add_action() and
kvmalloc() and devm_add_action().
In the Linux kernel, the following vulnerability has been resolved:
soc: qcom: socinfo: Avoid out of bounds read of serial number
On MSM8916 devices, the serial number exposed in sysfs is constant and does
not change across individual devices. It's always:
db410c:/sys/devices/soc0$ cat serial_number
2644893864
The firmware used on MSM8916 exposes SOCINFO_VERSION(0, 8), which does not
have support for the serial_num field in the socinfo struct. There is an
existing check to avoid exposing the serial number in that case, but it's
not correct: When checking the item_size returned by SMEM, we need to make
sure the *end* of the serial_num is within bounds, instead of comparing
with the *start* offset. The serial_number currently exposed on MSM8916
devices is just an out of bounds read of whatever comes after the socinfo
struct in SMEM.
Fix this by changing offsetof() to offsetofend(), so that the size of the
field is also taken into account.