Security Vulnerabilities
- CVEs Published In February 2025
In the Linux kernel, the following vulnerability has been resolved:
spi: sn-f-ospi: Fix division by zero
When there is no dummy cycle in the spi-nor commands, both dummy bus cycle
bytes and width are zero. Because of the cpu's warning when divided by
zero, the warning should be avoided. Return just zero to avoid such
calculations.
In the Linux kernel, the following vulnerability has been resolved:
HID: hid-thrustmaster: fix stack-out-of-bounds read in usb_check_int_endpoints()
Syzbot[1] has detected a stack-out-of-bounds read of the ep_addr array from
hid-thrustmaster driver. This array is passed to usb_check_int_endpoints
function from usb.c core driver, which executes a for loop that iterates
over the elements of the passed array. Not finding a null element at the end of
the array, it tries to read the next, non-existent element, crashing the kernel.
To fix this, a 0 element was added at the end of the array to break the for
loop.
[1] https://syzkaller.appspot.com/bug?extid=9c9179ac46169c56c1ad
In the Linux kernel, the following vulnerability has been resolved:
nfsd: clear acl_access/acl_default after releasing them
If getting acl_default fails, acl_access and acl_default will be released
simultaneously. However, acl_access will still retain a pointer pointing
to the released posix_acl, which will trigger a WARNING in
nfs3svc_release_getacl like this:
------------[ cut here ]------------
refcount_t: underflow; use-after-free.
WARNING: CPU: 26 PID: 3199 at lib/refcount.c:28
refcount_warn_saturate+0xb5/0x170
Modules linked in:
CPU: 26 UID: 0 PID: 3199 Comm: nfsd Not tainted
6.12.0-rc6-00079-g04ae226af01f-dirty #8
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.16.1-2.fc37 04/01/2014
RIP: 0010:refcount_warn_saturate+0xb5/0x170
Code: cc cc 0f b6 1d b3 20 a5 03 80 fb 01 0f 87 65 48 d8 00 83 e3 01 75
e4 48 c7 c7 c0 3b 9b 85 c6 05 97 20 a5 03 01 e8 fb 3e 30 ff <0f> 0b eb
cd 0f b6 1d 8a3
RSP: 0018:ffffc90008637cd8 EFLAGS: 00010282
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffff83904fde
RDX: dffffc0000000000 RSI: 0000000000000008 RDI: ffff88871ed36380
RBP: ffff888158beeb40 R08: 0000000000000001 R09: fffff520010c6f56
R10: ffffc90008637ab7 R11: 0000000000000001 R12: 0000000000000001
R13: ffff888140e77400 R14: ffff888140e77408 R15: ffffffff858b42c0
FS: 0000000000000000(0000) GS:ffff88871ed00000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000562384d32158 CR3: 000000055cc6a000 CR4: 00000000000006f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? refcount_warn_saturate+0xb5/0x170
? __warn+0xa5/0x140
? refcount_warn_saturate+0xb5/0x170
? report_bug+0x1b1/0x1e0
? handle_bug+0x53/0xa0
? exc_invalid_op+0x17/0x40
? asm_exc_invalid_op+0x1a/0x20
? tick_nohz_tick_stopped+0x1e/0x40
? refcount_warn_saturate+0xb5/0x170
? refcount_warn_saturate+0xb5/0x170
nfs3svc_release_getacl+0xc9/0xe0
svc_process_common+0x5db/0xb60
? __pfx_svc_process_common+0x10/0x10
? __rcu_read_unlock+0x69/0xa0
? __pfx_nfsd_dispatch+0x10/0x10
? svc_xprt_received+0xa1/0x120
? xdr_init_decode+0x11d/0x190
svc_process+0x2a7/0x330
svc_handle_xprt+0x69d/0x940
svc_recv+0x180/0x2d0
nfsd+0x168/0x200
? __pfx_nfsd+0x10/0x10
kthread+0x1a2/0x1e0
? kthread+0xf4/0x1e0
? __pfx_kthread+0x10/0x10
ret_from_fork+0x34/0x60
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
Kernel panic - not syncing: kernel: panic_on_warn set ...
Clear acl_access/acl_default after posix_acl_release is called to prevent
UAF from being triggered.
In the Linux kernel, the following vulnerability has been resolved:
HID: corsair-void: Add missing delayed work cancel for headset status
The cancel_delayed_work_sync() call was missed, causing a use-after-free
in corsair_void_remove().
In the Linux kernel, the following vulnerability has been resolved:
orangefs: fix a oob in orangefs_debug_write
I got a syzbot report: slab-out-of-bounds Read in
orangefs_debug_write... several people suggested fixes,
I tested Al Viro's suggestion and made this patch.
In the Linux kernel, the following vulnerability has been resolved:
gpiolib: Fix crash on error in gpiochip_get_ngpios()
The gpiochip_get_ngpios() uses chip_*() macros to print messages.
However these macros rely on gpiodev to be initialised and set,
which is not the case when called via bgpio_init(). In such a case
the printing messages will crash on NULL pointer dereference.
Replace chip_*() macros by the respective dev_*() ones to avoid
such crash.
In the Linux kernel, the following vulnerability has been resolved:
arm64: cacheinfo: Avoid out-of-bounds write to cacheinfo array
The loop that detects/populates cache information already has a bounds
check on the array size but does not account for cache levels with
separate data/instructions cache. Fix this by incrementing the index
for any populated leaf (instead of any populated level).
In the Linux kernel, the following vulnerability has been resolved:
workqueue: Put the pwq after detaching the rescuer from the pool
The commit 68f83057b913("workqueue: Reap workers via kthread_stop() and
remove detach_completion") adds code to reap the normal workers but
mistakenly does not handle the rescuer and also removes the code waiting
for the rescuer in put_unbound_pool(), which caused a use-after-free bug
reported by Cheung Wall.
To avoid the use-after-free bug, the pool’s reference must be held until
the detachment is complete. Therefore, move the code that puts the pwq
after detaching the rescuer from the pool.
In the Linux kernel, the following vulnerability has been resolved:
team: better TEAM_OPTION_TYPE_STRING validation
syzbot reported following splat [1]
Make sure user-provided data contains one nul byte.
[1]
BUG: KMSAN: uninit-value in string_nocheck lib/vsprintf.c:633 [inline]
BUG: KMSAN: uninit-value in string+0x3ec/0x5f0 lib/vsprintf.c:714
string_nocheck lib/vsprintf.c:633 [inline]
string+0x3ec/0x5f0 lib/vsprintf.c:714
vsnprintf+0xa5d/0x1960 lib/vsprintf.c:2843
__request_module+0x252/0x9f0 kernel/module/kmod.c:149
team_mode_get drivers/net/team/team_core.c:480 [inline]
team_change_mode drivers/net/team/team_core.c:607 [inline]
team_mode_option_set+0x437/0x970 drivers/net/team/team_core.c:1401
team_option_set drivers/net/team/team_core.c:375 [inline]
team_nl_options_set_doit+0x1339/0x1f90 drivers/net/team/team_core.c:2662
genl_family_rcv_msg_doit net/netlink/genetlink.c:1115 [inline]
genl_family_rcv_msg net/netlink/genetlink.c:1195 [inline]
genl_rcv_msg+0x1214/0x12c0 net/netlink/genetlink.c:1210
netlink_rcv_skb+0x375/0x650 net/netlink/af_netlink.c:2543
genl_rcv+0x40/0x60 net/netlink/genetlink.c:1219
netlink_unicast_kernel net/netlink/af_netlink.c:1322 [inline]
netlink_unicast+0xf52/0x1260 net/netlink/af_netlink.c:1348
netlink_sendmsg+0x10da/0x11e0 net/netlink/af_netlink.c:1892
sock_sendmsg_nosec net/socket.c:718 [inline]
__sock_sendmsg+0x30f/0x380 net/socket.c:733
____sys_sendmsg+0x877/0xb60 net/socket.c:2573
___sys_sendmsg+0x28d/0x3c0 net/socket.c:2627
__sys_sendmsg net/socket.c:2659 [inline]
__do_sys_sendmsg net/socket.c:2664 [inline]
__se_sys_sendmsg net/socket.c:2662 [inline]
__x64_sys_sendmsg+0x212/0x3c0 net/socket.c:2662
x64_sys_call+0x2ed6/0x3c30 arch/x86/include/generated/asm/syscalls_64.h:47
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcd/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: ti: am65-cpsw: fix memleak in certain XDP cases
If the XDP program doesn't result in XDP_PASS then we leak the
memory allocated by am65_cpsw_build_skb().
It is pointless to allocate SKB memory before running the XDP
program as we would be wasting CPU cycles for cases other than XDP_PASS.
Move the SKB allocation after evaluating the XDP program result.
This fixes the memleak. A performance boost is seen for XDP_DROP test.
XDP_DROP test:
Before: 460256 rx/s 0 err/s
After: 784130 rx/s 0 err/s