Security Vulnerabilities
- CVEs Published In February 2024
In the Linux kernel, the following vulnerability has been resolved:
f2fs: explicitly null-terminate the xattr list
When setting an xattr, explicitly null-terminate the xattr list. This
eliminates the fragile assumption that the unused xattr space is always
zeroed.
In the Linux kernel, the following vulnerability has been resolved:
binder: fix use-after-free in shinker's callback
The mmap read lock is used during the shrinker's callback, which means
that using alloc->vma pointer isn't safe as it can race with munmap().
As of commit dd2283f2605e ("mm: mmap: zap pages with read mmap_sem in
munmap") the mmap lock is downgraded after the vma has been isolated.
I was able to reproduce this issue by manually adding some delays and
triggering page reclaiming through the shrinker's debug sysfs. The
following KASAN report confirms the UAF:
==================================================================
BUG: KASAN: slab-use-after-free in zap_page_range_single+0x470/0x4b8
Read of size 8 at addr ffff356ed50e50f0 by task bash/478
CPU: 1 PID: 478 Comm: bash Not tainted 6.6.0-rc5-00055-g1c8b86a3799f-dirty #70
Hardware name: linux,dummy-virt (DT)
Call trace:
zap_page_range_single+0x470/0x4b8
binder_alloc_free_page+0x608/0xadc
__list_lru_walk_one+0x130/0x3b0
list_lru_walk_node+0xc4/0x22c
binder_shrink_scan+0x108/0x1dc
shrinker_debugfs_scan_write+0x2b4/0x500
full_proxy_write+0xd4/0x140
vfs_write+0x1ac/0x758
ksys_write+0xf0/0x1dc
__arm64_sys_write+0x6c/0x9c
Allocated by task 492:
kmem_cache_alloc+0x130/0x368
vm_area_alloc+0x2c/0x190
mmap_region+0x258/0x18bc
do_mmap+0x694/0xa60
vm_mmap_pgoff+0x170/0x29c
ksys_mmap_pgoff+0x290/0x3a0
__arm64_sys_mmap+0xcc/0x144
Freed by task 491:
kmem_cache_free+0x17c/0x3c8
vm_area_free_rcu_cb+0x74/0x98
rcu_core+0xa38/0x26d4
rcu_core_si+0x10/0x1c
__do_softirq+0x2fc/0xd24
Last potentially related work creation:
__call_rcu_common.constprop.0+0x6c/0xba0
call_rcu+0x10/0x1c
vm_area_free+0x18/0x24
remove_vma+0xe4/0x118
do_vmi_align_munmap.isra.0+0x718/0xb5c
do_vmi_munmap+0xdc/0x1fc
__vm_munmap+0x10c/0x278
__arm64_sys_munmap+0x58/0x7c
Fix this issue by performing instead a vma_lookup() which will fail to
find the vma that was isolated before the mmap lock downgrade. Note that
this option has better performance than upgrading to a mmap write lock
which would increase contention. Plus, mmap_write_trylock() has been
recently removed anyway.
In the Linux kernel, the following vulnerability has been resolved:
uio: Fix use-after-free in uio_open
core-1 core-2
-------------------------------------------------------
uio_unregister_device uio_open
idev = idr_find()
device_unregister(&idev->dev)
put_device(&idev->dev)
uio_device_release
get_device(&idev->dev)
kfree(idev)
uio_free_minor(minor)
uio_release
put_device(&idev->dev)
kfree(idev)
-------------------------------------------------------
In the core-1 uio_unregister_device(), the device_unregister will kfree
idev when the idev->dev kobject ref is 1. But after core-1
device_unregister, put_device and before doing kfree, the core-2 may
get_device. Then:
1. After core-1 kfree idev, the core-2 will do use-after-free for idev.
2. When core-2 do uio_release and put_device, the idev will be double
freed.
To address this issue, we can get idev atomic & inc idev reference with
minor_lock.
When ssl was enabled for Mongo Hook, default settings included "allow_insecure" which caused that certificates were not validated. This was unexpected and undocumented.
Users are recommended to upgrade to version 4.0.0, which fixes this issue.
Cross Site Scripting vulnerability in the sanitize function in Enhancesoft osTicket 1.18.0 allows a remote attacker to escalate privileges via a crafted support ticket.
Cross Site Scripting (XSS) vulnerability in ProjeQtOr 11.0.2 allows a remote attacker to execute arbitrary code via a crafted script to thecheckvalidHtmlText function in the ack.php and security.php files.
In the Linux kernel, the following vulnerability has been resolved:
net: prevent mss overflow in skb_segment()
Once again syzbot is able to crash the kernel in skb_segment() [1]
GSO_BY_FRAGS is a forbidden value, but unfortunately the following
computation in skb_segment() can reach it quite easily :
mss = mss * partial_segs;
65535 = 3 * 5 * 17 * 257, so many initial values of mss can lead to
a bad final result.
Make sure to limit segmentation so that the new mss value is smaller
than GSO_BY_FRAGS.
[1]
general protection fault, probably for non-canonical address 0xdffffc000000000e: 0000 [#1] PREEMPT SMP KASAN
KASAN: null-ptr-deref in range [0x0000000000000070-0x0000000000000077]
CPU: 1 PID: 5079 Comm: syz-executor993 Not tainted 6.7.0-rc4-syzkaller-00141-g1ae4cd3cbdd0 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/10/2023
RIP: 0010:skb_segment+0x181d/0x3f30 net/core/skbuff.c:4551
Code: 83 e3 02 e9 fb ed ff ff e8 90 68 1c f9 48 8b 84 24 f8 00 00 00 48 8d 78 70 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <0f> b6 04 02 84 c0 74 08 3c 03 0f 8e 8a 21 00 00 48 8b 84 24 f8 00
RSP: 0018:ffffc900043473d0 EFLAGS: 00010202
RAX: dffffc0000000000 RBX: 0000000000010046 RCX: ffffffff886b1597
RDX: 000000000000000e RSI: ffffffff886b2520 RDI: 0000000000000070
RBP: ffffc90004347578 R08: 0000000000000005 R09: 000000000000ffff
R10: 000000000000ffff R11: 0000000000000002 R12: ffff888063202ac0
R13: 0000000000010000 R14: 000000000000ffff R15: 0000000000000046
FS: 0000555556e7e380(0000) GS:ffff8880b9900000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000020010000 CR3: 0000000027ee2000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
udp6_ufo_fragment+0xa0e/0xd00 net/ipv6/udp_offload.c:109
ipv6_gso_segment+0x534/0x17e0 net/ipv6/ip6_offload.c:120
skb_mac_gso_segment+0x290/0x610 net/core/gso.c:53
__skb_gso_segment+0x339/0x710 net/core/gso.c:124
skb_gso_segment include/net/gso.h:83 [inline]
validate_xmit_skb+0x36c/0xeb0 net/core/dev.c:3626
__dev_queue_xmit+0x6f3/0x3d60 net/core/dev.c:4338
dev_queue_xmit include/linux/netdevice.h:3134 [inline]
packet_xmit+0x257/0x380 net/packet/af_packet.c:276
packet_snd net/packet/af_packet.c:3087 [inline]
packet_sendmsg+0x24c6/0x5220 net/packet/af_packet.c:3119
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0xd5/0x180 net/socket.c:745
__sys_sendto+0x255/0x340 net/socket.c:2190
__do_sys_sendto net/socket.c:2202 [inline]
__se_sys_sendto net/socket.c:2198 [inline]
__x64_sys_sendto+0xe0/0x1b0 net/socket.c:2198
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x40/0x110 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x63/0x6b
RIP: 0033:0x7f8692032aa9
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 d1 19 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007fff8d685418 EFLAGS: 00000246 ORIG_RAX: 000000000000002c
RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007f8692032aa9
RDX: 0000000000010048 RSI: 00000000200000c0 RDI: 0000000000000003
RBP: 00000000000f4240 R08: 0000000020000540 R09: 0000000000000014
R10: 0000000000000000 R11: 0000000000000246 R12: 00007fff8d685480
R13: 0000000000000001 R14: 00007fff8d685480 R15: 0000000000000003
</TASK>
Modules linked in:
---[ end trace 0000000000000000 ]---
RIP: 0010:skb_segment+0x181d/0x3f30 net/core/skbuff.c:4551
Code: 83 e3 02 e9 fb ed ff ff e8 90 68 1c f9 48 8b 84 24 f8 00 00 00 48 8d 78 70 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <0f> b6 04 02 84 c0 74 08 3c 03 0f 8e 8a 21 00 00 48 8b 84 24 f8 00
RSP: 0018:ffffc900043473d0 EFLAGS: 00010202
RAX: dffffc0000000000 RBX: 0000000000010046 RCX: ffffffff886b1597
RDX: 000000000000000e RSI: ffffffff886b2520 RDI: 0000000000000070
RBP: ffffc90004347578 R0
---truncated---
MeshCentral is a full computer management web site. Versions prior to 1.1.21 a cross-site websocket hijacking (CSWSH) vulnerability within the control.ashx endpoint. This component is the primary mechanism used within MeshCentral to perform administrative actions on the server. The vulnerability is exploitable when an attacker is able to convince a victim end-user to click on a malicious link to a page hosting an attacker-controlled site. The attacker can then originate a cross-site websocket connection using client-side JavaScript code to connect to `control.ashx` as the victim user within MeshCentral. Version 1.1.21 contains a patch for this issue.
Cilium is a networking, observability, and security solution with an eBPF-based dataplane. For Cilium users who have enabled an external kvstore and Wireguard transparent encryption, traffic between pods in the affected cluster is not encrypted. This issue affects Cilium v1.14 before v1.14.7 and has been patched in Cilium v1.14.7. There is no workaround to this issue.
QEMU before 8.2.0 has an integer underflow, and resultant buffer overflow, via a TI command when an expected non-DMA transfer length is less than the length of the available FIFO data. This occurs in esp_do_nodma in hw/scsi/esp.c because of an underflow of async_len.