Security Vulnerabilities
- CVEs Published In February 2025
In the Linux kernel, the following vulnerability has been resolved:
net: xdp: Disallow attaching device-bound programs in generic mode
Device-bound programs are used to support RX metadata kfuncs. These
kfuncs are driver-specific and rely on the driver context to read the
metadata. This means they can't work in generic XDP mode. However, there
is no check to disallow such programs from being attached in generic
mode, in which case the metadata kfuncs will be called in an invalid
context, leading to crashes.
Fix this by adding a check to disallow attaching device-bound programs
in generic mode.
In the Linux kernel, the following vulnerability has been resolved:
rxrpc, afs: Fix peer hash locking vs RCU callback
In its address list, afs now retains pointers to and refs on one or more
rxrpc_peer objects. The address list is freed under RCU and at this time,
it puts the refs on those peers.
Now, when an rxrpc_peer object runs out of refs, it gets removed from the
peer hash table and, for that, rxrpc has to take a spinlock. However, it
is now being called from afs's RCU cleanup, which takes place in BH
context - but it is just taking an ordinary spinlock.
The put may also be called from non-BH context, and so there exists the
possibility of deadlock if the BH-based RCU cleanup happens whilst the hash
spinlock is held. This led to the attached lockdep complaint.
Fix this by changing spinlocks of rxnet->peer_hash_lock back to
BH-disabling locks.
================================
WARNING: inconsistent lock state
6.13.0-rc5-build2+ #1223 Tainted: G E
--------------------------------
inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} usage.
swapper/1/0 [HC0[0]:SC1[1]:HE1:SE0] takes:
ffff88810babe228 (&rxnet->peer_hash_lock){+.?.}-{3:3}, at: rxrpc_put_peer+0xcb/0x180
{SOFTIRQ-ON-W} state was registered at:
mark_usage+0x164/0x180
__lock_acquire+0x544/0x990
lock_acquire.part.0+0x103/0x280
_raw_spin_lock+0x2f/0x40
rxrpc_peer_keepalive_worker+0x144/0x440
process_one_work+0x486/0x7c0
process_scheduled_works+0x73/0x90
worker_thread+0x1c8/0x2a0
kthread+0x19b/0x1b0
ret_from_fork+0x24/0x40
ret_from_fork_asm+0x1a/0x30
irq event stamp: 972402
hardirqs last enabled at (972402): [<ffffffff8244360e>] _raw_spin_unlock_irqrestore+0x2e/0x50
hardirqs last disabled at (972401): [<ffffffff82443328>] _raw_spin_lock_irqsave+0x18/0x60
softirqs last enabled at (972300): [<ffffffff810ffbbe>] handle_softirqs+0x3ee/0x430
softirqs last disabled at (972313): [<ffffffff810ffc54>] __irq_exit_rcu+0x44/0x110
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&rxnet->peer_hash_lock);
<Interrupt>
lock(&rxnet->peer_hash_lock);
*** DEADLOCK ***
1 lock held by swapper/1/0:
#0: ffffffff83576be0 (rcu_callback){....}-{0:0}, at: rcu_lock_acquire+0x7/0x30
stack backtrace:
CPU: 1 UID: 0 PID: 0 Comm: swapper/1 Tainted: G E 6.13.0-rc5-build2+ #1223
Tainted: [E]=UNSIGNED_MODULE
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Call Trace:
<IRQ>
dump_stack_lvl+0x57/0x80
print_usage_bug.part.0+0x227/0x240
valid_state+0x53/0x70
mark_lock_irq+0xa5/0x2f0
mark_lock+0xf7/0x170
mark_usage+0xe1/0x180
__lock_acquire+0x544/0x990
lock_acquire.part.0+0x103/0x280
_raw_spin_lock+0x2f/0x40
rxrpc_put_peer+0xcb/0x180
afs_free_addrlist+0x46/0x90 [kafs]
rcu_do_batch+0x2d2/0x640
rcu_core+0x2f7/0x350
handle_softirqs+0x1ee/0x430
__irq_exit_rcu+0x44/0x110
irq_exit_rcu+0xa/0x30
sysvec_apic_timer_interrupt+0x7f/0xa0
</IRQ>
In the Linux kernel, the following vulnerability has been resolved:
driver core: class: Fix wild pointer dereferences in API class_dev_iter_next()
There are a potential wild pointer dereferences issue regarding APIs
class_dev_iter_(init|next|exit)(), as explained by below typical usage:
// All members of @iter are wild pointers.
struct class_dev_iter iter;
// class_dev_iter_init(@iter, @class, ...) checks parameter @class for
// potential class_to_subsys() error, and it returns void type and does
// not initialize its output parameter @iter, so caller can not detect
// the error and continues to invoke class_dev_iter_next(@iter) even if
// @iter still contains wild pointers.
class_dev_iter_init(&iter, ...);
// Dereference these wild pointers in @iter here once suffer the error.
while (dev = class_dev_iter_next(&iter)) { ... };
// Also dereference these wild pointers here.
class_dev_iter_exit(&iter);
Actually, all callers of these APIs have such usage pattern in kernel tree.
Fix by:
- Initialize output parameter @iter by memset() in class_dev_iter_init()
and give callers prompt by pr_crit() for the error.
- Check if @iter is valid in class_dev_iter_next().
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: protect access to buffers with no active references
nilfs_lookup_dirty_data_buffers(), which iterates through the buffers
attached to dirty data folios/pages, accesses the attached buffers without
locking the folios/pages.
For data cache, nilfs_clear_folio_dirty() may be called asynchronously
when the file system degenerates to read only, so
nilfs_lookup_dirty_data_buffers() still has the potential to cause use
after free issues when buffers lose the protection of their dirty state
midway due to this asynchronous clearing and are unintentionally freed by
try_to_free_buffers().
Eliminate this race issue by adjusting the lock section in this function.
In the Linux kernel, the following vulnerability has been resolved:
ax25: rcu protect dev->ax25_ptr
syzbot found a lockdep issue [1].
We should remove ax25 RTNL dependency in ax25_setsockopt()
This should also fix a variety of possible UAF in ax25.
[1]
WARNING: possible circular locking dependency detected
6.13.0-rc3-syzkaller-00762-g9268abe611b0 #0 Not tainted
------------------------------------------------------
syz.5.1818/12806 is trying to acquire lock:
ffffffff8fcb3988 (rtnl_mutex){+.+.}-{4:4}, at: ax25_setsockopt+0xa55/0xe90 net/ax25/af_ax25.c:680
but task is already holding lock:
ffff8880617ac258 (sk_lock-AF_AX25){+.+.}-{0:0}, at: lock_sock include/net/sock.h:1618 [inline]
ffff8880617ac258 (sk_lock-AF_AX25){+.+.}-{0:0}, at: ax25_setsockopt+0x209/0xe90 net/ax25/af_ax25.c:574
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (sk_lock-AF_AX25){+.+.}-{0:0}:
lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5849
lock_sock_nested+0x48/0x100 net/core/sock.c:3642
lock_sock include/net/sock.h:1618 [inline]
ax25_kill_by_device net/ax25/af_ax25.c:101 [inline]
ax25_device_event+0x24d/0x580 net/ax25/af_ax25.c:146
notifier_call_chain+0x1a5/0x3f0 kernel/notifier.c:85
__dev_notify_flags+0x207/0x400
dev_change_flags+0xf0/0x1a0 net/core/dev.c:9026
dev_ifsioc+0x7c8/0xe70 net/core/dev_ioctl.c:563
dev_ioctl+0x719/0x1340 net/core/dev_ioctl.c:820
sock_do_ioctl+0x240/0x460 net/socket.c:1234
sock_ioctl+0x626/0x8e0 net/socket.c:1339
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:906 [inline]
__se_sys_ioctl+0xf5/0x170 fs/ioctl.c:892
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
-> #0 (rtnl_mutex){+.+.}-{4:4}:
check_prev_add kernel/locking/lockdep.c:3161 [inline]
check_prevs_add kernel/locking/lockdep.c:3280 [inline]
validate_chain+0x18ef/0x5920 kernel/locking/lockdep.c:3904
__lock_acquire+0x1397/0x2100 kernel/locking/lockdep.c:5226
lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5849
__mutex_lock_common kernel/locking/mutex.c:585 [inline]
__mutex_lock+0x1ac/0xee0 kernel/locking/mutex.c:735
ax25_setsockopt+0xa55/0xe90 net/ax25/af_ax25.c:680
do_sock_setsockopt+0x3af/0x720 net/socket.c:2324
__sys_setsockopt net/socket.c:2349 [inline]
__do_sys_setsockopt net/socket.c:2355 [inline]
__se_sys_setsockopt net/socket.c:2352 [inline]
__x64_sys_setsockopt+0x1ee/0x280 net/socket.c:2352
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(sk_lock-AF_AX25);
lock(rtnl_mutex);
lock(sk_lock-AF_AX25);
lock(rtnl_mutex);
*** DEADLOCK ***
1 lock held by syz.5.1818/12806:
#0: ffff8880617ac258 (sk_lock-AF_AX25){+.+.}-{0:0}, at: lock_sock include/net/sock.h:1618 [inline]
#0: ffff8880617ac258 (sk_lock-AF_AX25){+.+.}-{0:0}, at: ax25_setsockopt+0x209/0xe90 net/ax25/af_ax25.c:574
stack backtrace:
CPU: 1 UID: 0 PID: 12806 Comm: syz.5.1818 Not tainted 6.13.0-rc3-syzkaller-00762-g9268abe611b0 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_circular_bug+0x13a/0x1b0 kernel/locking/lockdep.c:2074
check_noncircular+0x36a/0x4a0 kernel/locking/lockdep.c:2206
check_prev_add kernel/locking/lockdep.c:3161 [inline]
check_prevs_add kernel/lockin
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
timers/migration: Fix off-by-one root mis-connection
Before attaching a new root to the old root, the children counter of the
new root is checked to verify that only the upcoming CPU's top group have
been connected to it. However since the recently added commit b729cc1ec21a
("timers/migration: Fix another race between hotplug and idle entry/exit")
this check is not valid anymore because the old root is pre-accounted
as a child to the new root. Therefore after connecting the upcoming
CPU's top group to the new root, the children count to be expected must
be 2 and not 1 anymore.
This omission results in the old root to not be connected to the new
root. Then eventually the system may run with more than one top level,
which defeats the purpose of a single idle migrator.
Also the old root is pre-accounted but not connected upon the new root
creation. But it can be connected to the new root later on. Therefore
the old root may be accounted twice to the new root. The propagation of
such overcommit can end up creating a double final top-level root with a
groupmask incorrectly initialized. Although harmless given that the final
top level roots will never have a parent to walk up to, this oddity
opportunistically reported the core issue:
WARNING: CPU: 8 PID: 0 at kernel/time/timer_migration.c:543 tmigr_requires_handle_remote
CPU: 8 UID: 0 PID: 0 Comm: swapper/8
RIP: 0010:tmigr_requires_handle_remote
Call Trace:
<IRQ>
? tmigr_requires_handle_remote
? hrtimer_run_queues
update_process_times
tick_periodic
tick_handle_periodic
__sysvec_apic_timer_interrupt
sysvec_apic_timer_interrupt
</IRQ>
Fix the problem by taking the old root into account in the children count
of the new root so the connection is not omitted.
Also warn when more than one top level group exists to better detect
similar issues in the future.
In the Linux kernel, the following vulnerability has been resolved:
ptp: Ensure info->enable callback is always set
The ioctl and sysfs handlers unconditionally call the ->enable callback.
Not all drivers implement that callback, leading to NULL dereferences.
Example of affected drivers: ptp_s390.c, ptp_vclock.c and ptp_mock.c.
Instead use a dummy callback if no better was specified by the driver.
In the Linux kernel, the following vulnerability has been resolved:
mailbox: th1520: Fix a NULL vs IS_ERR() bug
The devm_ioremap() function doesn't return error pointers, it returns
NULL. Update the error checking to match.
In the Linux kernel, the following vulnerability has been resolved:
memory: tegra20-emc: fix an OF node reference bug in tegra_emc_find_node_by_ram_code()
As of_find_node_by_name() release the reference of the argument device
node, tegra_emc_find_node_by_ram_code() releases some device nodes while
still in use, resulting in possible UAFs. According to the bindings and
the in-tree DTS files, the "emc-tables" node is always device's child
node with the property "nvidia,use-ram-code", and the "lpddr2" node is a
child of the "emc-tables" node. Thus utilize the
for_each_child_of_node() macro and of_get_child_by_name() instead of
of_find_node_by_name() to simplify the code.
This bug was found by an experimental verification tool that I am
developing.
[krzysztof: applied v1, adjust the commit msg to incorporate v2 parts]
In the Linux kernel, the following vulnerability has been resolved:
rhashtable: Fix potential deadlock by moving schedule_work outside lock
Move the hash table growth check and work scheduling outside the
rht lock to prevent a possible circular locking dependency.
The original implementation could trigger a lockdep warning due to
a potential deadlock scenario involving nested locks between
rhashtable bucket, rq lock, and dsq lock. By relocating the
growth check and work scheduling after releasing the rth lock, we break
this potential deadlock chain.
This change expands the flexibility of rhashtable by removing
restrictive locking that previously limited its use in scheduler
and workqueue contexts.
Import to say that this calls rht_grow_above_75(), which reads from
struct rhashtable without holding the lock, if this is a problem, we can
move the check to the lock, and schedule the workqueue after the lock.
Modified so that atomic_inc is also moved outside of the bucket
lock along with the growth above 75% check.